
AccelNET Control System User
Manual

Mark V. Stodola, National Electrostatics Corp.
Richard L. Kitchen, National Electrostatics Corp.

AccelNET Control System User Manual
by Mark V. Stodola and Richard L. Kitchen

Published Not yet published
Copyright © 2005 National Electrostatics Corp.

Abstract

AccelNET, "the Accelerator NETwork control system", is a software package designed for control of
electrostatic particle accelerator systems. AccelNET runs on PC hardware under the Linux operating
system. This manual covers a broad range of topics including: software operation and familiarization,
database design/structure, and database editing.

Table of Contents
1. Introduction to Linux .. 1

1. Default Users .. 1
2. Linux Startup Procedure .. 1
3. Logging into a Workstation ... 2
4. Linux Shutdown Procedure .. 2
5. Basic Linux Commands .. 3

2. AccelNET Installation .. 5
1. Introduction .. 5
2. Preparing the Operating System .. 5
3. Installation ... 5
4. Configuration .. 6

3. Introduction to AccelNET ... 8
1. Machine Parameters in the Control System Database .. 8
2. Starting/Stopping AccelNET Services .. 9

2.1. Services Startup (Menu Based) .. 9
2.2. Services Startup (Command Line) .. 10
2.3. Services Stop (Menu Based) .. 10
2.4. Services Stop (Command Line) .. 10

3. Using the AccelNET Tools .. 11
4. Introduction to Xcrt .. 11

4.1. Launching Xcrt (Menu-Based) ... 11
4.2. Launching Xcrt (Command Line) ... 11
4.3. Organization of the Xcrt Display Window .. 12
4.4. Basic Xcrt Operation .. 13

5. Assignable Meters ... 15
6. Assignable Knobs .. 16
7. Accelerator Startup Procedures ... 16

4. AccelNET Console Commands .. 18
5. Advanced AccelNET Topics .. 19

1. Manual Pages .. 19
2. Environment Variables ... 19
3. Directory Structure ... 19
4. Manipulation of the Accelerator Runtime Database .. 20

4.1. Saving the Entire Accelerator Runtime Database 20
4.2. Saving a Particle Run from the Accelerator Runtime Database 21

5. Using the Accelerator Scaling Program .. 22
6. Terminal Server Configuration ... 25

6. Accelerator Mass Spectrometry .. 27
1. Introduction to AMS .. 27
2. Sequential Beam Injection system ... 27
3. Sequential Beam Injection System control electronics ... 28

3.1. Sequence Controller ... 28
3.2. Sequenced D/A Converter ... 29
3.3. Gate Generator ... 30
3.4. Quad Receiver .. 30

4. AMS dosimetry supervision ... 30
5. Abundant Isotope Data Collection ... 31
6. Rare Isotope Data Collection .. 32
7. HISTmngr .. 33

7. System Maintenance .. 34
1. Backup the System to Tape .. 34
2. Creating and Writing CD/DVD Images .. 35

2.1. Creating a CD/DVD Image ... 35

iv

2.2. Writing a CD/DVD Image .. 35
8. Database Structure ... 37

1. General Information ... 37
2. Data Point Definition Tables .. 37

2.1. LabelRec Table ... 37
2.2. DescRec Table .. 37
2.3. Message Tables .. 40
2.4. DataRec Table .. 42

3. Button Tables .. 43
4. Data Point Definition Key Tables .. 43

4.1. RefKeys Table * ... 43
4.2. DKeys Table .. 43
4.3. CrKeys Table ... 43
4.4. CtKeys Table ... 44
4.5. OwnKeys Table .. 44
4.6. ScaKeys Table .. 44
4.7. DevKeys Table ... 44
4.8. DrvKeys Table ... 44
4.9. CmdKeys Table * .. 45
4.10. QueKeys Table * ... 45

5. Display Page Tables ... 45
5.1. PgKeys Table ... 45
5.2. CrtText Table ... 45
5.3. CrtFixed Table .. 46
5.4. CrtDCpnt Table .. 46
5.5. CrtBut Table .. 47
5.6. CrtICpnt Table .. 47

6. Display Page Key Tables ... 48
6.1. DFkeys Table ... 48
6.2. IconKeys Table ... 49

7. Interlock Tables ... 49
7.1. ChkList Table ... 49
7.2. ChkPoint Table ... 50
7.3. ChkAct Table ... 50
7.4. ChkAlarm Table ... 50
7.5. CPtype Field Usage ... 51

8. Numeric Processor Tables ... 51
8.1. NumList Table .. 51
8.2. NumPoint Table .. 52
8.3. NPtype Field Usage ... 52

9. Interlock and Numeric Processor Key Tables .. 52
9.1. CPTkeys Table ... 52
9.2. NPTkeys Table ... 52

10. CAMAC Interface Wiring Tables .. 53
10.1. JackRec Table ... 53
10.2. RPrecord Table ... 53
10.3. Zrecord Table ... 54
10.4. Trecord Table ... 54

11. CAMAC Interface Wiring Information Key Tables ... 55
11.1. ColKeys Table .. 55
11.2. BusKeys Table .. 56
11.3. JkKeys Table .. 56

12. Report Usage .. 57
12.1. Invoking Reports ... 57
12.2. Printing Reports .. 58

13. Report Formats .. 58
13.1. Label report .. 58
13.2. RecId and Module report ... 59

AccelNET Control System User Manual

v

13.3. JackRec report .. 59
13.4. RPrecord report ... 60
13.5. Zrecord report ... 60
13.6. Rpanel report .. 61
13.7. Zpanel report .. 62

14. BuildMB Process ... 63
15. Table Translation ... 64
16. Using SQL .. 65
17. Database Construction Tools .. 65

9. Editing ... 66
1. Introduction .. 66
2. Console Editing ... 66

2.1. Starting a new Contract and Database .. 66
2.2. Retrieving Tables .. 67
2.3. Updating Tables .. 67
2.4. Deleting entries ... 67
2.5. Database Conversion ... 68
2.6. Applying Changes ... 68

3. Graphical Editing ... 69
3.1. About pgEdit .. 69
3.2. Using pgEdit .. 70

A. Resolving PostgreSQL Trigger Errors ... 72
1. LabelRec Table Triggers ... 72
2. DescRec Table Triggers .. 72
3. DataRec Table Triggers .. 73
4. MsgKeys Table Triggers ... 73
5. Other Table Triggers .. 74

Glossary .. 75

AccelNET Control System User Manual

vi

Chapter 1. Introduction to Linux
The computer control system consists of one or more personal computers. Each computer runs a copy of
the Linux operating system. Linux is a UNIX style operating system that runs on x86 class machines.

If there is more than one computer in the system, they are interconnected by a network. One computer
contains the control system software and user files. The rest of the computers access that computer
through the network by using NFS. Throughout the rest of the manual, the computer containing the con-
trol system software and the user files will be refered to as the file server.

The network may also have terminal servers connected to it. Terminal servers are boxes that have a
number of serial ports and a network connection. They allow incoming and outgoing connections to be
made between the devices attached to serial ports and the network.

Starting the control system requires that the file server be started first, followed by the rest of the com-
puters and the terminal servers. After all of the computers and terminal servers are up and operating, the
accelerator control system may be started.

The accelerator control system is composed of a database manager program and groups of programs that
communicate between the database manager and the hardware.

Linux, as well as most other large powerful operating systems, requires an organized startup and shut-
down.

When the system is started, various housekeeping programs are loaded and executed. The file system is
checked to insure it wasn't damaged when the system was previously turned off. These and other func-
tions are performed in the startup process.

Shutdown is the opposite of startup. Disk buffers that are currently in memory are written back to the
disk drive. Housekeeping programs are terminated and the information that has been collected is prop-
erly stored. These and other functions are done by the shutdown process.

1. Default Users
AccelNET provides three default users. Each user serves a specific function.

postgres Administrative/maintanence account. Used for modifications to the AccelNET data-
base.

csadmin Administrative/maintanence account. Used for starting/stopping the AccelNET ser-
vices.

csoperator General user account. Used for operating a running accelerator.

2. Linux Startup Procedure
This procedure explains what to do to start an individual computer. If the system is operating correctly,
things should pretty much happen as described. If there are problems, refer to the Linux manuals for
more information.

Note that the file server computer should be the first machine started. Remember that the other com-
puters use the file server.

1

Procedure 1.1. Linux Startup

1. Turn on the power.

Wait for the disk drive to reach its operating speed and for the machine to perform its power on self
tests.

Wait for the booting menu to appear.

2. Press <Enter> (if you wait long enough the machine will proceed on its own)

Linux may decide to check the file system if it detects the computer was not shut down properly. If error
messages appear while the file system is being checked, it indicates that there is a problem with the files
contained on the disk. Usually it is safe to answer "y" to the questions fsck (the file system check pro-
gram) asks. Sometimes the file system check will require a reboot of the machine.

When this sort of a problem occurs, it usually means that the computer was shut off or restarted in a dis-
organized manner. Perhaps the computer crashed, the power failed, or someone pushed the reset button.
Consult the Linux manuals for more detailed information.

When the login prompt appears, the system is ready for operation.

3. Logging into a Workstation
The login name "csoperator" is provided as a default login for accelerator users. It is possible to custom-
ize the system to provide an individual login for each user. Please consult the Linux documentation for
information on creating user accounts.

When the computer is powered up, it will go through a normal boot process containing messages that are
usually followed by [OK]. Once the boot messages are complete, X (the graphical interface) will start up
and prompt for a login.

Type in the username and password in the appropriate text boxes. The password field may not be shown
on the initial screen, you will be prompted for it later if this is the case. During this time, you also have
the ability to select a Window Manager. It is recommended that KDE or Gnome be used. These two se-
lections provide the most user-friendly experience, being similar to Microsoft Windows.

4. Linux Shutdown Procedure
This procedure explains what to do to stop an individual computer. If the system is operating correctly,
things should pretty much happen as described. If there are problems, refer to the Linux manuals for
more information.

Many Linux desktops have a method to shutting down using the graphical interface. Because the graph-
ical method may vary, the command line method is described here.

Note that the file server computer should be the last machine stopped. Remember that the other com-
puters use the file server.

Procedure 1.2. Linux Shutdown

Introduction to Linux

2

1. Open a terminal (command prompt).

2. Super-user to root: su -

3. Enter the root password.

4. Enter the shutdown command: shutdown -h now

The system will perform a number of operations. If the system does not automatically power down,
a message is displayed saying that it is safe to shut off the power.

Note

There are other ways of shutting down, this is just one example. For example, an alternative to
the above command might be poweroff.

5. Basic Linux Commands
In order to effectively to use the more advanced features of the accelerator control system, the user
should be familiar with the process of logging into the system as well as the commands provided by the
Linux operating system.

The concepts of pathnames, current directory, and i/o redirection are very important to a good under-
standing of how the Linux environment works.

Look in the Linux manual pages for descriptions of how these and other commands work.

This is a list of basic commands:

cat Copy and concatenate files. Used most often to print the contents of a file on the screen. Ex-
ample: "cat <filename>"

cd Change directories. Example: "cd <new directory>"

cp Copy a file. Example: "cp <source> <target>"

ls List the contents of a directory. Example: "ls -l"

lpr Print files. Example: "lpr <file>"

mkdir Make a new directory. Example: "mkdir <directory name>"

pwd List the current working directory. Example: "pwd"

rm Remove a file. Example: "rm <file>"

This is a list of more advanced and administrative commands:

tar File archiving program. (used to copy to and from tape)

fsck File system check (used when Linux is started).

mkfs Create a Linux file system.

Introduction to Linux

3

mount Mount a disk partition, cd, floppy disk, etc. to be accessed as a Linux file system.

set List the environment variables (see the sh manual pages).

sh The shell.

umount Unmount a file system.

vi Text editor.

Introduction to Linux

4

Chapter 2. AccelNET Installation
1. Introduction

This chapter explains the procedures taken to install AccelNET onto a RedHat Linux 9.0 system. All
new accelerator control systems shipped from NEC should have AccelNET preinstalled.

Note

Initial setup of RedHat Linux 9.0 is not covered.

2. Preparing the Operating System
To prepare the system you must be logged in, or su'd to root. If you are not root, then su - and type in
the root password.

1. First, check for RedHat installed postgresql and postgresql-server packages.

root# rpm -q postgresql-server
root# rpm -q postgresql

2. If the packages are installed, you need to remove them.

Note

Be careful of the order you remove the packages. It may complain about dependencies.

root# rpm -e postgresql-devel
root# rpm -e postgresql-jdbc
root# rpm -e postgresql-odbc
root# rpm -e postgresql-perl
root# rpm -e postgresql-python
root# rpm -e postgresql-server
root# rpm -e postgresql-tcl
root# rpm -e postgresql-test
root# rpm -e php-pgsql
root# rpm -e postgresql

Now that you have postgres removed, you can begin the AccelNET installation.

3. Installation
Continuing on from the Preperation section (as root), you must mount the AccelNET installation media.
There are 2 methods of doing this.

5

Method 1 (AccelNET CDROM):

Note

If /dev/cdrom does not exist, you will need to replace it with the proper CDROM device node.

root# mount -t iso9660 /dev/cdrom /mnt/cdrom

Method 2 (NFS share on kitchen):

Note

The machine must be properly configured for NEC's internal network and be plugged into the
network.

root# mount -t nfs kitchen:/acc.base /mnt/cdrom

You should now have the AccelNET installation media mounted to /mnt/cdrom. Next, a few libraries
must be installed that are not standard in RedHat 9.0.

root# cd /mnt/cdrom/redhat/8.0
root# ./install_libs

Now that the proper libraries are in place, AccelNET can actually be installed:

root# cd /mnt/cdrom/installation
root# ./install_accelnet

If all went well, all of the needed files should be located in /AccelNET.

4. Configuration
>

First, set initial passwords for the csadmin and postgres accounts:

root# passwd csadmin
root# passwd csoperator
root# passwd postgres

Since you are using RedHat 9.0, the camac 'crate_24' command must be overwritten:

Note

Not all of these commands are run as root, pay close attention to the examples! Not all of the
chown and chmod commands may be necessary, but are included for completeness.

csadmin$ cp /AccelNET/necdrivers/rh9/crate_24 /AccelNET/sbin/crate_24
csadmin$ chown csadmin.cs_admin /AccelNET/sbin/crate_24

AccelNET Installation

6

csadmin$ chmod 755 /AccelNET/sbin/crate_24
csadmin$ ln -s /AccelNET/sbin/crate_24 /AccelNET/sbin/crate

Next, the nec initialization script must be configured and installed.

root# /AccelNET/necdrivers/build_nodes
root# cp /AccelNET/necdrivers/nec /etc/init.d/nec
root# chmod 755 /etc/init.d/nec
root# cd /etc/init.d
root# vi nec

1. Uncomment the lines to load and unload the device drivers needed for the specific machine.

For RedHat 9.0, you will need to insert the 'rh9' directory between the necdrivers and filename in
the commands. (e.g. /sbin/insmod -f /AccelNET/necdrivers/rh9/f_ksc2915mod_24.o major=80)
Make sure you use the _24.o files.

2. Insert the following line just after the 'chkconfig: 2345 92 92' line:

description: NEC AccelNET device driver loading/unloading

3. Save the file and close vi.

4. Finally, add the init script to chkconfig:

root# chkconfig --add nec
root# chkconfig nec on

It is a good idea to reboot (type 'reboot' as root) at this point to make sure that the nec startup script is
working and that postgres is starting properly. After rebooting, you can view the loaded modules by typ-
ing 'lsmod' and check for errors with 'dmesg'. To verify that postgres started properly, make sure that 'ps
ax | grep postmaster' returns an entry with '/AccelNET/pgbin/bin/postmaster -S -D/AccelNET/postgres'
or similar.

AccelNET Installation

7

Chapter 3. Introduction to AccelNET
An operator interacts with the accelerator control system by using a workstation. There may be one or
more workstations on the system. A workstation consists of a computer, keyboard, mouse, and perhaps
an assignable meter/knob system. The workstation may also be connected to CAMAC or other types of
data acquisition. Any workstation may access any parameter in the system and change the parameter if it
has write permission.

1. Machine Parameters in the Control System
Database

The control system is made up of devices. Examples of devices are Faraday cups, charging voltage sup-
plies, bending magnets, and electrostatic quads.

A device is identified by what is called the Label. It is 8 characters long. By convention the label is usu-
ally (not always) made of three fields.

The first field is the device name and is 3 characters long. The device name is to be right padded with
spaces if less than 3 characters are needed.

Examples:

FC Faraday Cup

EQ Electrostatic Quad

FOC Focus Power Supply

TPS Terminal Potential Stabilizer

The second field describes a region on the beamline.

Examples:

S1 First ion source

01 Preacceleration beamline

TN Tank entrance area (usually refers to items in the tank)

TX Tank exit area (usually refers to items in the tank)

The third field is a serial number. It describes an occurance of a device in a region on the beamline.

A complete Label looks like this:

FC 01-1 First Faraday cup on the preacceleration beamline

FC 01-2 Second Faraday cup on the preacceleration beamline

BM 01-1 First preacceleration beamline magnet

8

EQ TX-1 Post acceleration electrostatic quad (inside tank at exit end)

There are exceptions to this naming convention. For example, the label "SETUP" has as its parameters
all of the particle related information such as total machine energy, species, charge state, etc.

A device is made up of a set of parameters. Parameters are considered single control and readback
points. These parameters are identified by what is called a tag name. A tag name is a combination of the
device label and a RefName.

Example RefNames (typical of a Faraday cup):

PosSC Position Status Control

PosSR Position Status Read

CR Cup Current Read

The complete tags for the parameters associated with first preacceleration Faraday cup are:

FC 01-1 PosSC Position Status Control

FC 01-1 PosSR Position Status Read

FC 01-1 CR Cup current read

2. Starting/Stopping AccelNET Services
The AccelNET services must be started by the 'csadmin' user. The following instructions assume you
have logged in as the 'csadmin' user. All clicks will be a single click unless otherwise noted.

Note

Avoid starting the services up multiple times.

Checks are in place to help prevent this, but are not fool-proof. If you are unsure whether the services
are running or not, go through the stopping procedures before starting.

2.1. Services Startup (Menu Based)

1. Launch the AccelNET menu if it is not currently open by double-clicking the "AccelNET" icon on
the desktop.

2. Click the menu item labeled "AccelNET".

3. Click the sub-menu item labeled "Start Services".

4. A window will appear asking you if you want to clear the database. Select 'Yes' or 'No.' Clearing
the Database while starting services will remove the runtime database from memory and reload it
from disk. This can be useful when changes have been made to the on-disk database. It is safe to
clear the database when no changes have occured.

Introduction to AccelNET

9

If everything worked, a window will appear stating that the services have been started. Otherwise, a
window will appear with an error message stating the problem.

2.2. Services Startup (Command Line)

1. If you are not logged in as csadmin, type 'su - csadmin' and enter csadmin's password.

2. To verify the current prompt is owned by csadmin, use the 'whoami' command.

3. Enter the command 'dbstart' to start the database manager.

4. You will be asked if you want to clear the database. Answer the question with 'y' or 'n'. Clearing the
Database while starting services will remove the runtime database from memory and reload it from
disk. This can be useful when changes have been made to the on-disk database. It is safe to clear
the database when no changes have occured.

5. Enter the command 'startio' to start the AccelNET tasks.

If everything worked, no error messages will be displayed and the command prompt should be visible
again.

2.3. Services Stop (Menu Based)

1. Launch the AccelNET menu if it is not currently open by double-clicking the "AccelNET" icon on
the desktop.

2. Click the menu item labeled "AccelNET".

3. Click the sub-menu item labeled "Stop Services".

4. A window will appear asking you if you really want to stop the services. Select 'Yes' or 'No'.

If everything worked, a window will appear stating that the services have been stopped. Otherwise, a
window will appear with an error message stating the problem.

2.4. Services Stop (Command Line)

1. If you are not logged in as csadmin, type 'su - csadmin' and enter csadmin's password. To verify the
current prompt is owned by csadmin, use the 'whoami' command.

2. Enter the command 'cskill' to stop all services.

3. You will be asked if you want to kill the database server. Answer the question with 'y'.

If everything worked, no error messages will be displayed and the command prompt should be visible
again.

Introduction to AccelNET

10

3. Using the AccelNET Tools
All of the tools listed here may be started from the AccelNET menu.

Xcrt The page display program. See the section titled "Introduction to Xcrt" for more in-
formation.

gvm Creates a small window containing the GVM readback in a large font size. It
provides a method for placing the terminal voltage readback permanently on the
screen.

bpm The BPM assignment program.

Xerrlog An error logging program that displays messages sent from other parts of Accel-
NET such as the interlock manager. AccelNET may be configured (via the data-
base) to provide error messages for many types of events.

Print Params Prints out a list of the machine parameters. Clicking the menu entry invokes a sub-
menu containing the choices of what to log. The submenu contains ion source and
target beamline pairs. For example, clicking on an entry named "log S1-->05"
would cause all of the parameters from source 1 to beamline 05 to be logged.

4. Introduction to Xcrt
The graphical user interface for AccelNET is made up of two programs: crt and ts. The operator inter-
acts with crt while ts runs in the background handling events. From this point on, these two programs
will be referred to as Xcrt.

4.1. Launching Xcrt (Menu-Based)

1. Launch the AccelNET menu if it is not currently open by double-clicking the "AccelNET" icon on
the desktop.

2. Click the menu item labeled "AccelNET".

3. Click the sub-menu item labeled "Control Pages".

4. Click the sub-menu item labeled with the page you wish to display.

5. A window should appear showing you the page you selected.

4.2. Launching Xcrt (Command Line)
The following are commonly implemented commands to open Xcrt.

necclients crt Start a predefined set of windows (visual display, table of contents, and
help page)

necclients one_crt Start a single predefined window (visual display)

Introduction to AccelNET

11

4.3. Organization of the Xcrt Display Window
The Xcrt display window is divided into three sub windows. The windows are called: the mouse win-
dow, the keyboard window, and the page window.

Example Xcrt Display.

4.3.1. Mouse Window

The mouse window consists of two display lines. It is used to show the readback and control parameters
currently assigned to the mouse. In general, the upper line is the readback, lower is the control.

Selected parameters occur in pairs (readback and control point).

For example, when the charging power supply voltage control is selected, the selected readback is the
positive power supply voltage readback.

The association between control points and readback points is determined when the page is constructed
and may vary between pages.

A parameter is selected by placing the cursor on the numeric value or icon of the desired parameter and
pressing the select button on the mouse.

There may be more than one parameter set located under a field. An alphanumeric field has a possible
two parameter sets. An icon field has a possible four parameter sets. Clicking on the selected parameter
multiple times cycles through the sets.

Note that some parameter sets may contain just a readback value, some may have just a control value,
some may have both, and some may have both fields set to the same parameter.

4.3.2. Keyboard Window

The keyboard window consists of two display lines. The upper line is used to type commands. The
lower line is for displaying error messages. Error messages are normally displayed in red. Pressing enter
(<cr>) clears the error message.

4.3.3. Page Window

The page window displays the currently selected page.

Introduction to AccelNET

12

The display is organized as a set of pages. The pages are organized by machine region. A separate page
is provided for each injector, a page for the low energy beamline, etc. The pages are arranged to provide
overlap between machine regions (the same parameter may appear on a number of pages). For example,
the injector pages have some of the low energy beamline components on them. This is done to minimize
the number of page changes required when tuning beam.

Information on the pages is provided in two manners.

Alphanumeric Parameter name, value and units

Icon Picture of a device such as a Faraday cup where the color represents the status

4.3.4. Display Colors

Alphanumeric pages

Green Value is within database defined limits.

Red Value is outside of database defined limits.

Violet Indicates a status error. A CAMAC error such as a missing module. A DUTEC error such as
a communication problem or lack of power.

Icons

Dark Blue Device is inactive (power off).

Green Device is active (power on).

Yellow Various meanings depending upon the icon.

Faraday Cup Cup is inserted into the beam path

Double Slit Slit is in motion.

TPS Corona Probe Probe is moving.

GVM and icons inside of tank Indicates TPS operating mode, gvm icon yellow
means gvm mode.

Red Indicates an error condition. Example: control system has told Faraday cup to go out and
cup status read indicates cup is in

4.4. Basic Xcrt Operation

4.4.1. Using the Mouse

The mouse may be placed in three different operating modes: inc/dec, rollerball, and x/y. The mice have
three buttons that are used in different ways depending on the mode selected. The current mouse operat-
ing mode is selected via keyboard command. The operating mode is indicated by the prompt at the be-
ginning of the command line, located in the keyboard window.

Introduction to AccelNET

13

The mouse operating mode is displayed by the command line prompt as follows:

id/f> Indicates that the mouse is in fast inc/dec mode.

id/s> Indicates that the mouse is in slow inc/dec mode.

rl/f> Indicates that the mouse is in fast rollerball mode.

rl/s> Indicates that the mouse is in slow rollerball mode.

xy/f> Indicates that the mouse is in fast x/y mode.

xy/s> Indicates that the mouse is in slow x/y mode.

Mouse buttons operate in the following manner:

4.4.1.1. Inc/Dec Mode

A parameter is selected with one of the buttons while the other two are used to increase and decrease the
selected parameters value.

Left Select a parameter

Middle Decrease the selected parameter value

Right Increase the selected parameter value

4.4.1.2. Rollerball Mode

A parameter is assigned to the X axis of the mouse. One button is used to assign parameters. The mouse
is "armed" by pressing the other button. While armed, rolling in the X axis changes the parameter value.

Left Arm selected parameter while pressed. Decrease/Increase selected parameter value by mov-
ing along the X axis.

Middle Select a parameter

Right Note used

4.4.1.3. X/Y Mode

A parameter can be assigned to either of the mouse axes. Two of the buttons serve to assign parameters.
The mouse is "armed" by pressing the remaining button. While armed, rolling around changes the para-
meter values.

Left Arm selected parameters while pressed. Decrease/Increase selected parameter values by
moving along the X and Y axes.

Middle Select the X axis parameter

Right Select the Y axis parameter

Introduction to AccelNET

14

The commands "xy", "rl", "id", "ms" and "mf" are used to set the mouse operating mode. Please see the
section on keyboard commands for more information on their use.

4.4.2. Keyboard Commands

The following is a list of basic commands available through the keyboard. For a complete list of com-
mands, refer to page 2 within Xcrt.

pg n Change to page 'n' in the window from which the command is entered.

ch Change the value of the presently assigned parameter. If the current mode is inc/dec, the syn-
tax is "ch <value>". If the current mode is x/y the, syntax is "ch <Xvalue> <Yvalue>".

sv Save the value of the presently assigned parameter. If the current mode is x/y, both parameters
are saved.

rs Restore the previously saved value of the presently assigned parameter. If the current mode is
x/y, both parameters are restored.

lmr List readback limits of the presently assigned parameter. If the current mode is x/y, both para-
meters are listed.

lmc List control limits of the presently assigned parameter. If the current mode is x/y, both para-
meters are listed.

ldc List the contents of the presently assigned control data record. If the current mode is x/y, the
command is ignored.

ldr List the contents of the presently assigned readback data record. If the current mode is x/y, the
command is ignored.

valc List the current value of the presently assigned control parameter. If the current mode is x/y,
the command is ignored.

valr List the current value of the presently assigned readback parameter. If the current mode is x/y,
the command is ignored.

id Enter increment/decrement mode.

rl Enter rollerball mode.

xy Enter x/y mode.

mf Set the mouse fast. Affects the speed of parameter changes via the mouse.

ms Set the mouse slow. Affects the speed of parameter changes via the mouse.

<cr> (carriage return) Used to terminate a command. Typing a <cr> causes the command line to be
displayed.

<ff> (form feed - ctrl-L) clear the command line.

 (delete) delete an entered character.

5. Assignable Meters

Introduction to AccelNET

15

There may be several assignable meters in the system. Each meter module has a mantissa display (the
meter), a liquid crystal display (LCD), two range select buttons, and an assign button. There is also an
analog jack for each meter located on the rear of the meter chassis. The analog jack gives the value of
the mantissa. The voltage range is 0-10v.

The current meter assignment is shown on a LCD located above the meter. The first line of the display
shows the Label and RefName for the assigned parameter. The second line shows the parameter value
and units. The third line shows the currently selected meter range.

The meter system is only accessable through the workstation it is connected to. The currently assigned
readback parameter in the focused window is assigned to a meter when the assign button for that meter
is pushed. If the mouse readback parameter is NULL, the meter is unassigned.

There are two meter range buttons. Pressing a button increases or decreases the meter range.

If both range buttons are pressed at the same time, the meter enters freeze mode. Freeze mode is indic-
ated by the message "frz" on the 3rd line of the LCD. This mode is used with autoranging parameters
such as the Faraday cup current reads. Pressing a button increases or decreases the meter range. Pressing
both buttons at the same time when in freeze mode exits freeze mode.

Meter overrange is indicated by the word "overrange" on the LCD. No meter assignment is indicated by
the LCD being blank.

Certain types of devices can not be assigned to the meters. These usually consist of digital
(status/control) parameters. For example: Faraday cup position reads.

6. Assignable Knobs
There may be several assignable knobs in the system. Each assignable knob module consists of a knob, a
LCD, two range select buttons, a save button, a restore button, and an assign button.

The current knob assignment is shown on the LCD located above the knob. The first line of the display
shows the Label and RefName for the assigned parameter. The second line shows the parameter value
and units. The third line shows the current knob sensitivity setting.

The meter system is only accessable through the workstation it is connected to. The currently assigned
control parameter in the focused window is assigned to a knob when the assign button for that meter is
pushed. If the mouse control parameter is NULL, the knob is unassigned.

The knob sensitivity is given in turns to full scale (tfs). For example, if you are controlling a 15KV
power supply and the sensitivity is set to 50 tfs, each complete turn of the knob will increase or decrease
the voltage by 300V (15KV/50tfs = 300V). Pressing a range button increases or decreases the knob
sensitivity.

The save and restore buttons work in exactly the same way as the keyboard "sv" and "rs" commands.
Pressing the save button stores the current value of the parameter. Pressing the restore button recalls a
previously saved value.

7. Accelerator Startup Procedures
The accelerator commands have been arranged in a way that hopefully provides an organized and con-
venient method of starting up the machine. The intention is to start the machine up in stages or layers.

The best order for issuing commands, using S2 and 1B as examples, is:

Introduction to AccelNET

16

1. If AccelNET is not already operating, follow the startup procedures elsewhere in the manual.

2. Select "Machine->Master Power->On" from the AccelNET menu. This turns on all of the machine
basics like Faraday cup controllers, bending magnets, etc.

3. Select "Machine->Source 2->On" from the AccelNET menu. This command turns the ion source
cooling, deck power, and bias supply on. It also closes the source Faraday cup.

4. Select "Machine->Source 2->Warm" from the AccelNET menu. This command presets some of the
parameters to arbitrary values.

5. If a previously saved ion source setup is availible, click into a terminal window, change to the ap-
propriate directory, and type: send S2sav This presets the preacceleration beamline and the ion
source to the previously saved values.

If there is a source setup on the menu that you wish to use, then select it from the menu.

6. Select "Machine->Accelerator->Warm" from the AccelNET menu. This turns on the rotating shaft,
blower, etc and presets the charging and TPS to some running values that won't spark if the chains
are started.

7. If a previously saved machine setup is availible, click into a terminal window, change to the appro-
priate directory, and type: send MACHsav This sets the TPS and charging system to previously
saved values.

8. If a previously target beamline setup is availible, click into a terminal window, change to the appro-
priate directory, and type: send ??sav (where the name of the appropriate beamline is substituted for
"??") This sets the post acceleration components to previously saved values.

9. Open the gas stripper valve SLOWLY until the desired pressures are obtained on the tube entrance
and exit vacuum gauges. Keep in mind that the presence of beam changes the vacuum reading.

10. Check the setting of the charging voltage and turn it down if necessary.

11. After the corona probe finishes moving into position, select "Machine->Accelerator->Run" from
the AccelNET menu. This starts the charging chains.

12. Open the Faraday cups, increase the charging, etc to get the beam through the machine.

The sources usually require some warmup time, therefore you will probably need to start with a lower
charging voltage than the final setting from the last run and increase the charging as the source warms
up.

If the charging system is balanced correctly, the beam should go all the way to the target with minimal
retuning. The parameters most in need of adjustment are the ion source parameters and the stripping gas.
With a little practice, it is easy to return the beam to the target at the same energy previously run and
with the same beam current.

The user should resist the temptation to immediately start retuning the machine and instead look for and
carefully adjust those items that are the least well controlled by the computer such as gas, charging and
ion source focus.

If a previously saved run is not being loaded, the ion species setup information should be entered on the
machine setup page.

Introduction to AccelNET

17

Chapter 4. AccelNET Console
Commands

These are commands which may be used after the control system has been started. They provide an easy
to use method for starting up the accelerator equipment.

Most, not all, of the commands listed here have been implemented in the menus. You may type the com-
mand in the terminal window or you may invoke the command via the menu.

The command system has been implemented in a way that allows it to be easily customized for an indi-
vidual operator's taste or for individual site requirements.

machine <arg>

Manipulate basic accelerator systems.

on Turns on all basic machine items (DS, FC, BM, TPS, etc). It does not turn on the charging sys-
tem, chains, etc.

off Turns off all basic items and CH, RS, BLW (in case the operator forgot).

misc This command is optionally present in the machine script and is used mostly for maintenance.

source <arg1> <arg2>

Manipulate source parameters.

S1 off Turns source S1 off and resets values to 0.

S1 on Turns on source S1 and sets defaults, also sets SETUP SrcSel = S1.

S2 off Turns source S2 off and resets values to 0.

S2 on Turns on source S2 and sets defaults, also sets SETUP SrcSel = S2.

acc <arg>

Accelerator control.

off Turns blower (BLW), chains (CH), charging power supply (CPS) and rotating shaft (RS) off.

cold Turns BLW, CH and CPS off.

warm Turns BLW, CPS TPS, and RS on. Sets default values for TPS and charging system. If "acc
run" command is issued, accelerator terminal will charge up and operate "benignly"
(approximately 1 MeV).

run Turns the chains on.

stop Turns the chains off.

18

Chapter 5. Advanced AccelNET Topics
1. Manual Pages

The content of this manual does not cover every command and configuration of the AccelNET system.
Manual pages have been created for a large percentage of the commands and other aspects of Accel-
NET. To access them, use the man command, browse the AccelNET web interface, or use the X manual
pages menu item from the AccelNET menu.

2. Environment Variables
Shell Variables

USER_TREE Pathname to the AccelNET tree.

CONF Pathname component to contract specific subdirectories.

DBMAN_HOST Host where dbman/pgman runs.

DOSE_HOST Host where DOSEserv runs.

LOG_HOST Host where printer is served from.

MBS_HOST Host where MBSseqTask runs.

DBman Variables

DB_SIZE_FILE Configuration file for master database size.

AUTH Authorization file.

Xcrt Variables

DISPLAY Host where the Xserver is running.

ASSIGN Host where the assign service is running.

KNOB Host where the knob service is running.

METER Host where the meter service is running.

TREND Host where the trend service is running.

CRT_SIZE_FILE Configuration file for crt database size.

3. Directory Structure
19

$USER_TREE/sbin Path name to executables.

$USER_TREE/$CONF/startup Startup scripts.

$USER_TREE/$CONF/asm Configuration files for meter/knob/assign/fp4d services.

$USER_TREE/$CONF/config AccelNET configuration files.

$USER_TREE/db/$CONF/db Database files.

$USER_TREE/db/$CONF/data Data files used by individual programs.

$USER_TREE/sys/machcmds General purpose shell scripts and programs.

$USER_TREE/$CONF/machcmds Contract specific shell scripts and programs.

$USER_TREE/$CONF/CmdFiles Command files containing parameters and values for machcmds
scripts.

$USER_TREE/$CONF/ScaleLists Parameter lists for save, restore, and status operations.

$USER_TREE/$CONF/tftpboot Terminal server startup and configuration scripts.

4. Manipulation of the Accelerator Runtime
Database

In order for information to be saved, restored, scaled or otherwise manipulated, an empty directory must
first be created in which to work. The Linux command "mkdir <directory name>" is used for this. It is
suggested that the directory name be used to identify the particle run. Linux directory names may be up
to 255 characters long. For example, "Au+++3.0MeV" could be the name for a triple plus gold run at
3.0MeV particle energy.

Next change into the directory just created by typing: cd <directory name>

Many of the commands described in the previous section use the current directory as a place to read
from and write information into. Most of them are also implemented using Linux shell scripts (please
see the Linux manual pages for bash). They in turn use the programs "ReqPar" and "dbmod" in order to
communicate with the control system.

The program "ReqPar" reads from a list of tag names and asks the control system for the current values.
The values obtained are written into a disk file along with the tag name.

The program "dbmod" may be used to send values to the control system from files created by ReqPar.
The files containing the lists of parameters to obtain from the control system and the lists of parameter
values obtained are text files and may be created or edited by a standard text editor such as vi.

4.1. Saving the Entire Accelerator Runtime Database
This is a save of all of the tables in the database. Each table is stored in a seperate disk file. The disk
files have as their names "<table name>.sav" The commands "up" and "updaemon" are used to save the
tables. The command "down" is used in place of "dbload" at startup time in order to reload the saved
database. The format of the command is: down all sav

Saving the complete database is most useful in cases where it is desirable to restore the system to a run-
ning state without going through a cold start process. For example, if the computer crashes in the middle

Advanced AccelNET Topics

20

of a run.

The program "up" is a voluntary save. The operator enters the program and a menu appears asking
which tables to save. The usual method is to save of all the tables. The program may then be exited or
left running to resave tables when the operator desires. Usually only the DATA table will need to be
resaved.

The second program "updaemon" is a one minute interval DATA table save. When the program is in-
voked, all of the tables are saved. After that, the DATA table is resaved at one minute intervals until ex-
ited. The program is exited by pressing "ctrl-C".

A listing of the saved database may be obtained by using "listit".

4.2. Saving a Particle Run from the Accelerator Runtime
Database

A particle run is saved by retrieving the values of individual parameters from the runtime database. The
saved parameter values are stored in disk files and may be sent to the control system later in order to re-
create a run of the same type. They may also be processed by the scaling program to create a run for an-
other energy or ion species.

The program "request <arg>" is used to obtain lists of values from the running database.

The program "send <arg>" is used to send previously obtained lists of values to the running database.
The machine parameters are organized by sections of the machine. For example, typing "request S2sav"
obtains a list of all values from source 2 to the entrance of the machine.

One peculiarity to note in regard to the bending magnets is that when using S1sav, S2sav, etc as argu-
ments to "request," the field strength setting parameters for the bending magnets must be set to agree
with the field strength reading from the hall probe. The field strength setting is sent to the control system
when the file is sent, thus invoking the magnet tune routine.

When the machine scaling parameter lists are requested (S1, S2, 1B, etc), the hall probe reading is re-
trieved and the field setting is generated, therefore this is not a problem.

The program "extract <arg>" may be used to obtain a parameter list from a database previously saved by
"up" or "updaemon".

The recommended procedure for saving a particle run using S2 is:

1. Make a directory to hold the run.

2. Change to the directory just created.

3. Check to make sure the magnet field settings match the hall probe readings.

4. Check to make sure selected ion source, selected beam line, particle name, input mass, output mass
and charge state have all been set.

5. Check to make sure the double slit position settings match the position readbacks and set if neces-
sary.

6. If running in slit mode check to make sure TRV is set to match GVM.

7. Type "request S2sav"

Advanced AccelNET Topics

21

8. Type "request MACHsav"

9. Type "request 1Bsav"

10. Type "request DS"

It might be helpful to use "vi" to make a file containing notes about the run. For example, the stripper
gas and source heater settings.

It also might be helpful to use "up" or "updaemon" to save all the tables. This can be helpful later if the
run needs to be scaled, someone wants to look at an odd parameter value, or get a listing.

5. Using the Accelerator Scaling Program
The scaling program allows the particle energy, particle species, and other such parameters to be
changed. The current values of the machine parameters can be retrieved from the running database,
changed, and sent back to the running database. Alternately, parameters saved from a previous run may
be scaled and sent to the running database.

The preacceleration components may be changed seperately from the post acceleration and machine
components, thus allowing the injection energy to be changed to obtain a "match" into the accelerator.

Preacceleration and ion source parameters from a run may be combined with post acceleration paramet-
ers from another run in order to create a run on a new target beamline.

The scaling process is divided into three parts:

1. Obtaining the current parameter values.
2. Scaling the values.
3. Sending the newly scaled values to the running database.

The scaling process uses parameter lists to do its job. A parameter list is a disk file with lines of text
containing the tag name and value of the parameters. The scaling program reads the parameter list file
and outputs a new file with the same format containing the newly scaled values.

Parameter lists to be scaled may be obtained from three sources:

1. A retrieved list from the running database using the "request" command.
2. A previously retrieved list from the "request" command.
3. A previously saved database from either the "up" or "updaemon" command. In order to use this

source, the "extract" command must be run to convert the saved database to the proper format.

When the scaling program is invoked, a copy of the entire database is read into memory. As each para-
meter in the list is processed, a scaling key is looked up in the database. The scaling key tells how to
process the parameter to obtain the new value.

The scaling program must be provided with information that tells it the current particle energy, mass,
and other needed values in order to function properly. This information is read in from a file called
"MACHval" when the program is invoked. The file is obtained from the running database by typing "re-
quest MACH" or from a database save by "up" or "updaemon" by typing "extract MACH". Either way,
it must be present in the current directory for the program to run correctly.

The program changes parameters such as the charge state, mass, and particle energy via a menu.

Advanced AccelNET Topics

22

The accelerator is divided into three regions: preacceleration, machine, and post acceleration. Each re-
gion has a particle energy, charge state, and mass associated with it.

The energy relationship between the areas is TotalPartE = InjPartE + MachPartE. The scaling program
allows any one of the three variables to be manipulated in the following way:

TotalPartE If a new value is entered, InjPartE remains constant. MachPartE = TotPartE(new
value) - InjPartE

MachPartE If a new value is entered, InjPartE remains constant. TotPartE = MachPartE(new
value) + InjPartE

InjPartE If a new value is entered, MachPartE remains constant. TotPartE = MachPartE + Inj-
PartE(new value)

The preacceleration region contains all of the beamline components from the ion source to the entrance
of the accelerator. When components in this machine region are scaled, the values of all components af-
fected by a change in InjPartE are recalculated. This includes the bending magnets, einzel lenses, and
steerers. Also, the cathode, extractor, and deck bias for a SNICS source. For an RF source, the focus, ex-
tractor, and deck bias.

The machine region contains the components needed to set the machine to a given terminal voltage.
When components in this machine region are scaled, the values of all components affected by a change
in MachPartE are recalculated. This includes TRV and corona probe position. The charging voltage is
reset to the value needed for no beam operation if it is included in the list to be processed. (The charging
voltage is not currently in the parameter lists, therefore it should be reset by hand).

The post acceleration region contains all of the beamline components after the machine region. When
components in this machine region are scaled, the values of all components affected by a change in Tot-
PartE are recalculated. This includes all post acceleration optics and the in tank quads and steerers.

The TRV setting is reset by changes in MachPartE. In turn, when TRV is changed, the corona probe po-
sition is recalculated. If TRV is changed by a large amount upward, it may be wise to put in a preacceel-
eration cup and turn off the chains before sending the new values. Wait for the corona probe to reach its
new position before turning the chains back on. This prevents unnecessary sparking while the probe is
moving to the new position.

The field strength of the magnets is calculated on the basis of MfieldR (the current hall probe value) and
the new value is MfieldC (the magnetic field setting value). When the new MfieldC values are written
into the running database, the magnet autotune routine is invoked causing the magnets to be retuned to
the new field strength.

InjPartM is used to calculate preacceleration optics. TotalPartM is used to calculate post acceleration op-
tics.

The runtime system calculates:

InjPartE = InjPartV * abs(InjChgState)

MachPartE = (GVM * (OutPartM / InjPartM) * abs(InjChgState)) + (GVM * abs(OutChgState))

TotalPartE = InjPartE + MachPartE

InjChgState, OutChgState, InjPartM and OutPartM are entered by the operator as part of the machine
setup information.

This is an example of how to do a scaling run. We are going to reduce TotalPartE by changing the ter-

Advanced AccelNET Topics

23

minal voltage. Ion source S2 and beamline L6 are being used for the run.

The initial conditions are:

1. TotalPartE = 12.2 MeV
2. InjPartE = 0.055 MeV
3. MachPartE = 12.145 MeV
4. OutChgState = 3+
5. InjPartM = 197
6. OutPartM = 197
7. TRV = 3.036 MV

The steps are:

1. Make an empty directory.
2. Change to the directory just created.
3. Check to make sure particle mass, ion source selection, etc have been entered on the machine setup

page.
4. Type "request MACH" to obtain the current machine operation values.
5. Type "request L6" to obtain the current post acceleration component values.
6. Type "scale L6" to enter the scaling program and scale the post acceleration components.
7. Type "a" to select TotPartE from the menu.
8. Type "12.0<cr>" to enter the new value.
9. Type "r" to scale the L6 parameter list.
10. Type "x" to exit the scaling program.
11. Type "scale MACH" to enter the scaling program and scale the machine components.
12. Type "r" to scale the MACH parameter list.
13. Type "x" to exit the scaling program.
14. Type "send MACH" to send the new machine operation values.
15. Type "send L6" to send the new post acceleration component values.

Note

It is not necessary to reenter the desired particle energy after the first invokation of "scale".
When "scale" is exited, a file named "scaenv" is written into the current directory. This file
contains the setup information for the scaling program. If the file is present, it is reloaded the
next time "scale" is invoked.

If the scaling process is repeated by using "request" to obtain new values from the running database,
"scaenv" should be removed before invoking "scale".

This is another example of how to do a scaling run. In this example we are going to reduce the injection
energy by 5 KeV. The initial conditions are the same as the last example.

The steps are:

1. Make an empty directory.
2. Change to the directory just created.
3. Check to make sure particle mass, ion source selection, etc have been entered on the machine setup

page.
4. Type "request S2" to obtain the current preacceleration component values.
5. Type "request MACH" to obtain the current machine operation values.
6. Type "request L6" to obtain the current post acceleration component values.
7. Type "scale S2" to enter the scaling program and scale the preacceleration components.
8. Type "c" to select InjPartE from the menu.
9. Type "0.050<cr>" to enter the new value.

Advanced AccelNET Topics

24

10. Type "r" to scale the S2 parameter list.
11. Type "x" to exit the scaling program.
12. Type "scale L6" to enter the scaling program and scale the post acceleration components.
13. Type "r" to scale the L6 parameter list.
14. Type "x" to exit the scaling program.
15. Type "send S2" to send the new preacceleration component values.
16. Type "send L6" to send the new post acceleration component values.

6. Terminal Server Configuration
This is the setup procedure for the terminal servers.

1. Turn on power and wait for unit to boot.

2. Log into the unit and become the super user.

a. Username> kitchen (this name doesn't matter)

b. Local_1> su

c. Passwd> system

3. Return to boot program.

a. Local_1>> init noboot

b. Wait for boot program to come up.

4. Restore factory defaults.

a. Boot> flush nvr

b. Wait for reboot.

5. Perform initial configuration.

a. Username> kitchen

b. Local_1> su

c. Passwd> system

d. Local_1>> def server ipaddress 192.168.2.6

e. Local_1>> def server startupfile
"192.168.2.1:/tftpboot/contract-t1.strt"

f. Local_1>> init noboot

Advanced AccelNET Topics

25

6. Prevent rarp and bootp.

a. Boot> set server bootp disable

b. Boot> set server rarp disable

c. Boot> init 451

d. Wait for reboot.

7. System should now be ready to use.

Advanced AccelNET Topics

26

Chapter 6. Accelerator Mass
Spectrometry
1. Introduction to AMS

AccelNET provides a complete AMS data collection system capable of managing data collection for any
species of interest. All collected information is logged to disk. The system may be reconfigured by oper-
ator command to change ion species.

AMS data logging is comprehensive. Data for every multicup (stable isotope off-axis Faraday cup) are
logged in disk files and time stamped with the jumping cycle number in which the measurement was
taken. Event data for each detected rare isotope particle is logged and is time stamped with the jumping
cycle number and event number within the jumping cycle.

A "setup" file is written containing other information such as the terminal voltage, rare isotope, charge
state, etc. for each measurement.

All of the logging files are written in ASCII to make them easy to view, manipulate and input to other
programs.

As each cathode measurement is completed, a summary of the measurement is written to a disk file and
displayed on the screen.

When the runlist is completed (all cathodes are measured), a summary file is written containing the aver-
age currents, rare isotope counts, average ratios, standard deviations etc. for all cathodes in the runlist.
Other summary files may be created containing tab separated fields suitable for use by Quattro and Ex-
cel.

After all measurements for a list of cathodes have been completed, the datasets gathered may be reana-
lyzed off line if necessary. Parameters such as the rare isotope gates may be changed and the datasets re-
processed to obtain new summaries.

The summaries are then analyzed to perform normalization, background subtraction and so on.

NEC has written software using the PV-Wave (a data analysis package) language which performs both
post measurement functions. NEC calls this software IsoNET.

IsoNET is divided into two programs. One program is used for reanalysis (off line data reduction) of the
datasets. It traverses a list of datasets specified by the operator, reevaluates them and writes new sum-
mary files.

The second program performs normalization, background subtraction and calculates conventional AMS
results and uncertainties.

2. Sequential Beam Injection system
The sequential beam injection system consists of an ion source, an electrostatic spherical analyzer, a
bending magnet with an insulated chamber, three off axis Faraday cups and an X/Y steerer.

The post acceleration portion of the system consists of a bending magnet, three off axis Faraday cups, an
electrostatic cylindrical analyzer and a gas ionization chamber. The figure titled "AMS system compon-
ents" is a simplified line drawing of the accelerator layout.

Two of the cups at each end of the machine are used for carbon AMS measurements. The two cups plus

27

a third set of cups can also be used for other species of AMS.

The ion source may be either a multicathode solid SNICS source or a multicathode gas SNICS source.
In both cases a negative ion beam is accelerated from the source and passed through an electrostatic
spherical analyzer (ESA). The ESA removes energy tails in the beam, which are produced by the cesium
sputtering process. In systems containing two ion sources the ESA is made rotatable to select which ion
source is to be used.

The beam then passes through a bending magnet with an insulated chamber. The bending magnet is set
to bend 14C to the correct angle for injection into the accelerator. 12C and 13C are bent past the angle
needed for accelerator injection into a set of offset Faraday cups which are monitored by AccelNET
AMS. A power supply connected to the insulated magnet chamber is controlled by a signal supplied by
the sequential injection control electronics. Voltages are sequentially applied to the magnet chamber to
inject 12C and 13C.

A set of X/Y steerers follows the bending magnet. The steerers are also controlled by the jumping sys-
tem. A different set of voltages is applied for each injected species to correct for slight possible differ-
ences in beam position and direction which may be produced by the different gap voltages applied to the
magnet chamber.

The beam jumping control electronics may also be used for a simultaneous injection system. In this case
bending magnet chamber bias and the steerers are not required but an electronic chopper is used to re-
duce the average intensity of the 12C ion beam to about 1% of its DC value. The data collection process
is otherwise unchanged.

3. Sequential Beam Injection System control
electronics

Beam jumping waveform and gating signals are generated by a set of CAMAC modules designed and
manufactured by NEC. Below is a description of each of the modules which make up the system. Please
refer to the figures titled "AMS data collection System block diagram" and "AMS carbon data ac-
quistion waveforms".

3.1. Sequence Controller
The "Sequence Controller" CAMAC module generates the timing information. A single jumping cycle
may be as long as 4 seconds but is more typically about 100ms. A 4MHz clock and 24 bit programming
registers provide a resolution of 0.25us/step.

The Sequence Controller may be programmed to free run, meaning that the next jumping cycle starts
immediately after the previous one ends, or may be line synced, meaning that the next jumping cycle is
started at the next zero crossing of the AC power line. The choice of free run or line sync and the polar-
ity of the zero crossing may be set by the user.

Jumping cycles are counted by the computer. At the end of each jumping cycle a LAM (Look At Me)
signal is generated by the Sequence Controller, which then pauses until the LAM is acknowledged by
the computer. LAM processing may be disabled by the user for diagnostic purposes.

A ribbon cable connects the Sequence Controller to the other CAMAC modules making up the jumping
system. This cable carries the timing data to the other modules.

One jumping cycle is made up of several "states". The Sequence Controller outputs a state number
which is used by the rest of modules.

The Sequence Controller contains 16 timing comparator registers. There is one comparator register for
each state.

Accelerator Mass Spectrometry

28

At the beginning of each jumping cycle a counter register is initialized to zero. This register is incremen-
ted by the 4MHz clock.

The comparator registers are programmed to increment the state number at the appropriate delta T for
each state. The value of the comparator register for the current state is compared to the counter register.
When the value of counter register is greater than the value of the comparator register the state number
is incremented.

The maximum number of states used in a jumping cycle is programmable. The jumping cycle ends when
the value of comparator register for the maximum state number to use is exceeded.

Typical carbon AMS is done using 7 states in the following way. See "AMS system components" for
more information.

State 0 This is the rest state. When the sequencer is not performing a jumping cycle. i.e. it is
waiting for the next AC line trigger or for the LAM to be acknowledged it is in this
state.

This state may be used to provide a predelay, for example, if line sync is in use one can
delay the start of the actual jumping cycle for some amount of time after the trigger.

State 1 Power supply voltages slew to the correct value for injection of the first abundant iso-
tope.

State 2 High energy side measurement of the first abundant isotope.

State 3 Power supply voltages slew to the correct value for injection of the second abundant
isotope.

State 4 High energy side measurement of the second abundant isotope.

State 5 Power supply voltages slew to the correct value for injection of the rare isotope (14C).
Usually for carbon AMS this means 0 volts on the magnet chamber, other species such
as aluminium may require different settings.

State 6 Rare Isotope data collection and low energy side measurement of both abundant iso-
topes.

State 7-15 Not used.

3.2. Sequenced D/A Converter
A Sequenced D/A converter CAMAC module provides the waveforms needed to drive the jumping
power supplies.

Usually three Sequenced D/A Converters are used in a system. One converter drives the injection mag-
net chamber bias power supply. The other two are used to drive a set of power supplies connected to
steerers installed in the beamline after the injector bending magnet.

The Sequenced D/A Converter contains four analog value registers. Another set of registers associates a
value register with the state number provided by the Sequence Controller.

If the value registers are assigned in this way:

VCreg0 Abundant isotope #1

Accelerator Mass Spectrometry

29

VCreg1 Abundant isotope #2

VCreg2 Rare isotope. Usually this value is zero for the magnet chamber power supply but may be
something else for the steerers.

VCreg3 Not used.

Then the state numbers from the Sequence Controller would be assigned as follows:

State 0 VCreg2

State 1 VCreg0

State 2 VCreg0

State 3 VCreg1

State 4 VCreg1

State 5 VCreg2

State 6 VCreg2

State 7-15 Not used.

3.3. Gate Generator
The Gate Generator CAMAC module provides various signals used to control the AMS data collection
system. The module provides 8 separate outputs. Each output may be individually programmed to be on
or off during any state. The outputs are differential to allow them to drive long cables. Usually the out-
puts are connected to the "Quad Receiver" described below at the destination end of the signal.

Typically two channels are used to clock the low energy transient recorders, two channels clock the high
energy transient recorders, and one channel is the rare isotope gate.

See the sections which follow for more information.

3.4. Quad Receiver
The Quad Receiver CAMAC module is a simple module containing four channels of differential receiv-
ers and two TTL level outputs for each receiver. The differential receivers are connected to the gate gen-
erator outputs. The outputs may be individually programmed by DIP switches inside of the CAMAC
module to provide a high true or low true output.

4. AMS dosimetry supervision
AccelNET AMS provides a complete facility to control AMS data collection. A supervisory program
controls the changing of the cathode in the ion source and starting and stopping of data collection. The
status of the accelerator is monitored, and the program will pause data collection in the event of a prob-
lem such as a beamline valve closing due to a vacuum fault. Data collection startup is inhibited in cases
where the operator may have failed to open a Faraday cup or a beamline valve or other accelerator prob-
lems may interfere with data collection.

The supervisory program may be configured to call other programs at various points in its execution.

Accelerator Mass Spectrometry

30

For example, one might implement a program to log accelerator parameters and run this program each
time a cathode is measured.

The supervisory program operates from a list of cathodes (a runlist) generated by the user. This list spe-
cifies measurement parameters including the number of times to measure the cathode, the warmup time,
the data collection time and the data collection mode.

The cathodes may be divided into groups within the list and each group measured consecutively or inde-
pendently. Data may be collected for a fixed amount of time or a fixed number of rare isotope events.

When collecting for a fixed number of events, a time limit is also used to prevent excessive collection
time on cathodes which have low count rate or problems such as low current. This mode collects until
one of the limits is reached.

The cathode runlist may be traversed in two ways.

One way is to measure each cathode once and then go to the next cathode in the list. When this method
is used the cathode list is traversed as many times as necessary until all cathodes in the list have been
measured the number of times specified for each cathode.

The second way to traverse the cathode list is to measure each cathode repeatedly until the cathode has
been measured the number of times specified in the runlist. When working in this mode another program
in AccelNET can be used to analyze the measurements as they occur and make decisions about whether
to go on to the next cathode or measure the same one again.

This is typically used in applications where it is desired to make several short measurements of a cath-
ode and after some minimum number of measurements make a decision based on the scatter of measure-
ments whether to measure again or go to the next cathode.

AccelNET provides a program module which makes this decision based on the results of the most recent
N number of runs. It is possible to write program modules using other selection criteria.

IsoNET also provides a "best run" selection feature for off line analysis.

5. Abundant Isotope Data Collection
Abundant isotope collection is performed by a set of current amplifiers and CAMAC transient recorders.
The current amplifiers are controlled by the computer and may be adjusted over a wide range.

The output of each current amplifier is connected to a transient recorder. A transient recorder is a type of
list mode ADC. During each jumping cycle the transient recorders are individually clocked by signals
from the gate generator at the appropriate moment to capture the value of the pulsed current waveform.

Usually each transient recorder is clocked once per jumping cycle. The isotope is sent to the offset
Faraday cup by the beam jumping system, and a snapshot of the current value is taken and placed in the
internal memory of the transient recorder.

Occasionally (approximately every 10 seconds) data collection is paused, and the list of measurements is
uploaded to the computer where the information is placed in disk files for later processing.

Each time a block of data is uploaded numbers such as the average current and isotope ratios are updated
in AccelNET.

NEC offers an option to this system which allows the transient recorders to be clocked more than once
per jumping cycle. Using this option one can capture several datapoints within each Faraday cup current
pulse and perhaps better quantify the measurement.

Accelerator Mass Spectrometry

31

6. Rare Isotope Data Collection
Rare Isotope data collection is handled by a gas filled, delta-E detector, a set of NIM amplifiers and lo-
gic modules, a CAMAC peak holding ADC, a CAMAC multichannel counter and a CAMAC list pro-
cessor.

A list processor is a CAMAC module which performs CAMAC I/O operations independently of the
computer. It contains a large RAM so the data from the I/O operations it performed can be stored.

The detector contains up to six plates for measurement of Etotal, dE1, dE2, dE3, dE4, and dE5.

The analog outputs from the NIM amplifiers, a trigger signal generated by the NIM electronics and
gated by a signal from the jumping electronics are fed into the peak holding ADC.

A program is loaded into the list processor by AccelNET and the list processor is enabled. Each time the
ADC receives the trigger signal from the NIM electronics it performs a conversion. At the end of the
conversion the ADC asserts a LAM signal.

The list processor waits for the LAM from the peak holding ADC to trigger it. Each time the list pro-
cessor is triggered it runs the program which has been loaded into it.

The program performs a number of CAMAC I/O operations to copy the data from the ADC to the list
processor and clear the LAM. It then goes to sleep until the next trigger.

Periodically data collection is paused, and the data collected in the list processor's internal memory are
uploaded to the computer.

The rare isotope data collection system uses two channels of the CAMAC multichannel counter.

The ADC trigger signal from the NIM electronics is split and is sent to the ADC and to one channel of
the CAMAC counter module. Each time the ADC is triggered the counter is incremented. This provides
a count of the number of ADC triggers supplied by the NIM electronics. When the data are uploaded
from the list processor this register is read and a parameter containing the total number of ADC triggers
is updated.

When the uploaded data are processed the number of events contained in the data block is counted and a
parameter containing the total number of events processed by the list processor is updated.

If the ADC is already busy performing a conversion when another trigger is received, a particle event
will be missed. By comparing the two numbers one can get an idea of the number of missed events
(detector system pileup). Normally the number of missed events is very small, usually less than 0.1% of
the total number of events.

Another channel of the counter module is used to count the number of jumping cycles which have oc-
curred. It is connected to a signal from the jumping electronics which causes the counter to increment at
the end of each jumping cycle. Each time the list processor is triggered the cycle number is read from
the counter and placed in the block of event data. This allows individual events to be stamped with the
cycle number in which they occured.

All aspects of rare isotope data collection are controlled by configuration files. Parameters such as the
number of channels of data read from the ADC can be changed. This makes it possible to use the system
with other types of particle detectors and perhaps use the system for other types of event counting.

For example, a solid state detector requiring only one ADC channel could be used. The program loaded
into the list processor would be changed to only retrieve data from a single channel. This has the side ef-
fect of allowing more events to be stored in the list processor's memory and decreasing the data collec-
tion dead time because a smaller number of CAMAC I/O operations need to be performed.

It is also possible to locate CAMAC hardware needed for other types of experiments in the same CA-

Accelerator Mass Spectrometry

32

MAC crate and load different programs into the list processor for the various configurations.

7. HISTmngr
HISTmngr is a display tool which allows viewing of the histogram, contours, and gates which have been
defined for the species of interest. Any of the defined histograms or contours may be viewed and the
event gate settings may be changed from this program.

When rare isotope data are collected and uploaded into the computer the individual event data blocks are
processed according to rule sets contained in a configuration file.

The format of the rare isotope event file and sets of one and two dimensional histogramming arrays
(contours) are specified here. An event gate may be defined for each spectrum.

As each event data block is processed a line of data is written to the event file and the histogramming ar-
rays are updated. One channel of input data may participate in several histograms and contours at the
same time.

Accelerator Mass Spectrometry

33

Chapter 7. System Maintenance
1. Backup the System to Tape

The backup program allows backups to be made of two groups of files.

The first is the "root" group. Backup of this information is required only when changes are made to
Linux and the files associated with it. For example, if new users are added to the system.

The second is the "users" group. As new particle runs are added, this information changes and should be
backed up. Currently the backup shell script copies all files owned by postgres, csadmin, csoperator, and
kitchen to tape.

The restore program is used to copy files from a tape to the disk. When this operation is performed, files
are created or modified on the disk as necessary.

The backup and restore programs are shell scripts and are easy to change. As the amount of information
contained on the disk drive grows, the shell scripts may have to be changed in order for all of the in-
formation to correctly write to and read from tape.

The backup and restore programs both use the program tar to perform their jobs. See the Linux manuals
for information on how to use tar.

Use these steps to perform a backup:

1. Log in as or su to root.

2. Insert a tape into the tape drive.

3. Type "backup <arg>". (See below)

4. The program performs the appropriate function.

5. Log out/exit.

The backup program is invoked as follows:

backup <arg> Invoke the backup program.

init Prepare a new tape to recieve information or erase an old tape.

root Backup the root information as explained above.

users Backup the user information as explained above.

The restore program is invoked as follows:

restore <arg> Invoke the restore program.

root Reload the root information as explained above.

34

1 http://www.xcdroast.org/
2 http://www.k3b.org/

users Reload the user information as explained above.

2. Creating and Writing CD/DVD Images
To aid in the backup of data, NEC generally provides a CD/DVD writer with each control system. This
section will cover the basic usage of some scripts to create and write standardized backups of AccelNET
releated data. If you would like to use the CD/DVD writer for other purposes, using a graphical applica-
tion such as xcdroast1 or K3b2 is recommended. The scripts provided are wrappers to the following
command line tools: mkisofs, cdrecord, growisofs.

2.1. Creating a CD/DVD Image
CDs and DVDs are normally written using what is refered to as an image. An image can be in many dif-
ferent formats depending on the methods used to create it. The most universal of these images is called
an ISO and conforms to the ISO9660 specifications.

The typical usage for CD/DVD images is to backup the AccelNET directory tree. The files contained in
the AccelNET tree are owned by several different users and groups. Because of this, the root user must
be used to create the backup image. The following is a set of procedures to produce what is called an
AccelNET snapshot.

1. Login as or su - to the root user.

csadmin$ su -
Password: <type root's password and press Enter>
root#

2. Change to the /cdrecord directory.

root# cd /cdrecord

3. Use buildit to create the image.

root# ./buildit snapshot

The file /cd.accelnet will be created that can be burned to CD or DVD.

The buildit command may also be used to create custom CD/DVD images. For usage information, run
buildit without any arguments.

2.2. Writing a CD/DVD Image

System Maintenance

35

Once an image has been created, either using the buildit or on your own, it needs to be written to a CD
or DVD. To accomplish this, the recordit is used. The following is a set of procedures to write the snap-
shot image to a cd.

1. Insert a blank CD into the CD/DVD writer.

2. Change to the /cdrecord directory.

csadmin$ cd /cdrecord

3. Use recordit to write the image.

csadmin$./recordit cd snapshot

The recordit command may also be used to write custom CD/DVD images. For usage information, run
recordit without any arguments.

System Maintenance

36

1 http://www.postgres.org/
2 SQL - Structured Query Language

Chapter 8. Database Structure
1. General Information

The Postgres1 database manager is used to construct and maintain the control system database. In addi-
tion, it is used to generate the wire lists needed to assemble the CAMAC interfaces.

All of the relevant information needed to build the control system database is entered via SQL2 into the
Postgres database.

After the database is entered into Postgres, each one of the tables needed by the accelerator control sys-
tem is extracted from the Postgres database via SQL queries. They are then processed by other programs
to translate the information into a format used by the runtime system.

This manual gives definitions for the fields in the tables maintained by the Postgres database and how
they are related to each other.

A bold field name indicates the primary key. In some cases the table is keyed by more than one field.
This is called a composite key. An italicized field name indicates an alternate (candidate) key. An altern-
ate key is a field that can be used to uniquely identify a record (row, tuple) in a table in place of the
primary key. This means that it must remain a unique value for each record, just like a primary key.

2. Data Point Definition Tables
The LabelRec, DescRec and DataRec tables all work together to provide a definition of the data points
in the control system.

More information concerning the use of the Label and RefName fields can be obtained in the operators
manual in the section titled "Organization of machine parameters in the Control System Database".

2.1. LabelRec Table
The LabelRec table defines a list of valid device names.

Label Identifier for the device/group. (e.g. FC 01-1)

Name String describing the device. (e.g. Faraday Cup)

Lcomm Comments field.

PartNum Not in use. The intention was to associate a part number for a controller with a label and
print the information on the wire lists.

2.2. DescRec Table
This table provides a view of individual parameters for a device. The bit field to be viewed comes from
the DataRec table.

37

The current binary parameter values are located in DataRec.DataVal. A record in this table allows the
word and the bit field within the word to be located, masked and right justified. Other fields determine
how the value obtained is converted to a physical value and formatted for display.

A parameter value is extracted from the runtime database using DataCvt(). The scaled value is checked
against the limit fields (PhyMin and PhyMax) and is returned along with an error code that indicates
whether the value is within limits.

If the parameter is used for control, a field specifies the method for control input. See the section titled
"CtKeys" for more information. A check is made to see if the writer is attempting to write a value within
acceptable limits and if the writer has permission to write into the database through this record.

Label First half of the tag name. (e.g. FC 01-1)

Validated by LabelRec.Label.

RefName Second half of the tag name. (e.g. PosSC)

Validated by RefKeys.RefName.

Llabel Specifies a logical (symbolic) link to another Label.

LRefName Specifies a logical (symbolic) link to another RefName. Causes the rest of the fields
to be ignored and the fields of the linked Label/RefName pair to be used. It is highly
recommended that all of the ignored fields be set to the equivalent of nil or 0. This is
due to a possible future overriding capability. Using the same power supply for two
pieces of equipment might be an example use for this. (e.g. EQ TX-1 PwrSC might
link to CPS TX-1 PwrSC)

Units An eight char field containing the physical units string. (e.g. KV, V, A, G, or T)

DataType Data conversion key.

Validated by Dkeys.DtNme.

See the section titled "DataTypes."

CrtKey Display format key.

Validated by CrKeys.CrNme.

See the section titled "CrtKeys."

CtlKey Modify control format key. Determines how a mouse, keyboard, or other input device
affects a parameter.

Validated by CtKeys.CtNme.

See the section titled "CtlKeys."

Owner Name of the task that owns the record.

Validated by OwnKeys.OwnNme.

See the section titled "OwnKeys."

WpermD Write permissions.

See the section titled "Write Permissions."

Database Structure

38

ScaKey Database scaling key. Used by the auto-scaling program(s).

Validated by ScaKeys.ScaNme.

See the section titled "ScaKey."

Message When the value of DataType field is Ldisp this field specifies a message table.

Validated by checking MsgKeys.MsgNme.

See the section titled "MsgKeys."

SpanMin The minimum physical(hardware) value of the parameter. This is used to calculate M
and B.

See the section titled "BuildMB."

SpanMax The maximum physical(hardware) value of the parameter. This is used to calculate M
and B.

See the section titled "BuildMB."

PhyMin The minimum virtual(software) value of the parameter. Used in the runtime database
to determine if an attempted write or read is within bounds.

PhyMax The maximum virtual(software) value of the parameter. Used in the runtime database
to determine if an attempted write or read is within bounds.

IncVal Used in most CtlKeys to determine step(increment) size of a change. In most cases
this value is created automatically by the BuildMB process.

See the section titled "BuildMB."

M Conversion coefficient 1. In most cases this value is created automatically by the
BuildMB process.

See the section titled "BuildMB."

B Conversion coefficient 2. In most cases this value is created automatically by the
BuildMB process.

See the section titled "BuildMB."

DRkey Used to determine how to treat the extracted binary field.

See the section titled "DRkey Usage."

Size Size of the extracted binary field in bits.

Offset Offset into the binary word from which to extract the binary field.

Addr RecId of the corresponding binary field in the DataRec table.

Validated by DataRec.RecId.

Dcomm Comments field.

MBconvKey Enables automatic calculation of the M and B values.

MBsetIncKey Enables automatic calculation of the SetInc value.

Database Structure

39

2.2.1. DataTypes

See datatypes(7) in the AccelNET manual pages for a list of valid datatypes.

2.2.2. CrtKeys

See crtkeys(7) in the AccelNET manual pages for a list of valid crt keys.

2.2.3. CtlKeys

See ctlkeys(7) in the AccelNET manual pages for a list of valid control keys.

2.2.4. Write Permissions

See write_perm(7) in the AccelNET manual pages for an explanation of the write permissions.

2.2.5. ScaKeys

See scakeys(7) in the AccelNET manual pages for a list of valid scaling keys.

2.2.6. DRkey Usage

The DRkey is a one character field that specifies how to interpret the extracted binary field.

The values of the field and their meanings are as follows:

U Treat the extracted field as an unsigned number.

I Treat the extracted field as a signed number. The minimum value of the integer is -(2^(size-1)).
The maximum value of the integer is 2^(size-1)-1. For example, if size = 12 the integer has a range
of -2048 to 2047.

P Treat the extracted field as in 'I.' Negative values are treated as zero.

N Treat the extracted field as in 'I.' Positive values are treated as zero.

2.2.7. SpanMin and SpanMax Usage

SpanMin and SpanMax are used to calculate the values of the data conversion coefficients M and B.
SpanMin is the physical value that corresponds to the minimum binary value of the data point. SpanMax
corresponds to the maximum binary value. DescRec.DataType, DescRec.Size, DescRec.DRkey and
DataRec.DTkey all play a role in the process.

Calculation of the coefficients is carried out by a family of programs that traverse the database and cal-
culate the values for all of the records at one time. Each member of the program family is responsible for
handling one value of DataType. Not all of the possible values of DataType are supported. See the sec-
tion titled "BuildMB" for more information.

2.3. Message Tables
The message tables are used in conjunction with the Ldisp datatype. A message is provided in a table for
each possible value of the data point. The value of the data point and the message type are used as an in-
dex into the table.

Database Structure

40

The runtime data conversion and formatting process is split into two pieces. The first part is concerned
with obtaining the physical value of the data point. The second part is the display formatting.

The goal of the Postgres implementation is to allow the collection of information needed to create and
maintain the message tables. This has been done by creating two tables (MsgKeys and MsgTbl) for mes-
sage table management. These tables also exist in the runtime system.

The DescRec table contains a field (Message) that associates a message list with it. The field is used
only with DescRecs that have DataType = Ldisp. DescRecs with other DataType values have "NullMsg"
entered into the Message field as a place holder.

The messages to be displayed are entered in the MsgTbl. There should be an entry for each possible
value of the data point even if not all values are expected to occur. This is done to prevent any unexpec-
ted behavior. Each entry in the table must have a unique value of MsgVal for a given MGown (Postgres
enforces this).

During runtime, the Message field from the DescRec table is used as MsgNme/MGown. A value is ex-
tracted from the DataRec table using information stored in the DescRec entry. The resulting value is
checked against PhyMin and PhyMax and becomes MsgVal. A list of messages is traversed looking for
a matching MGown/MsgVal pair to determine which message to use (MsgText). If no match is found,
'*overrange*' is used.

The DataVal field from the DataRec table is used as MsgVal to retreive the particular message
(MsgText) from the MsgTbl referenced by MGown and MsgVal.

The MsgKeys table allows each message list to be given a name by which it is referred to in the
DescRec.Message field. (e.g. "PwrMsgSC", "PwrMsgSR")

Note

It is necessary for the value of CrtKey to be 'Lmsg' to display the messages.

2.3.1. MsgKeys Table

This table defines a message list and its size.

MsgNme Name of the message list.

MsgSize Number of messages in the list.

Comments Comments field.

2.3.2. MsgTbl Table

This table contains the text for all messages in all of the message lists.

MGown List that this message record belongs to.

Validated by MsgKeys.MsgNme.

MsgVal Index of the message in the list.

MsgText Message text.

Database Structure

41

2.4. DataRec Table
The DataRec table defines a record where data is stored. Usually this record is associated with the data
acquisition hardware, however, this is not always the case. There are quite a few places in the control
system where information is acquired, rescaled, or otherwise processed to obtain new results. Total
beam energy calculation or magnet field strength deviation might be examples of this.

There are also many places where a number is read into the system and never written out to any hard-
ware. Examples might be charge state, desired magnet field strength, or desired particle mass.

RecId A serial number used to identify the record.

DevType Used by the I/O software to determine the type of hardware I/O transactions to perform in
order to obtain data from (or write to) the device.

Validated by DevKeys.DevTypeK.

See the section titled "DevType."

Driver Data acquisition group.

Validated by DrvKeys.DrvNme.

Crate First part of the hardware address. In CAMAC this is the crate number that is set on the ac-
tual crate. This value is also used for grouping/sorting of reports.

Slot Second part of the hardware address. In CAMAC this is the slot number. This value is also
used for grouping/sorting of reports.

ChanNo Third part of the hardware address. In a CAMAC A/D converter this is the channel number.
The software that builds the I/O transactions for a module interprets this for a given device.
This value is also used for grouping/sorting of reports.

Dither Number of bits to mask off for dither reduction. Used by the analog read service.

DTkey Format of the DataVal, PrevVal and SaveVal fields. 'I' is an integer field, 'F' is a floating
point field.

DataVal Present/current value.

PrevVal Previous/last value.

SaveVal Value saved by operator command.

DTcomm Comments field.

2.4.1. DevType

See devkeys(7) in the AccelNET manual pages for a list of valid device keys.

2.4.2. Driver

See drvkeys(7) in the AccelNET manual pages for a list of valid driver keys.

2.4.3. DTkey

Database Structure

42

There are three possible values for DTkey.

F Floating point value (signed).

U Integer value (unsigned).

N Negated integer value (unsigned). This key is rarely used. It simply negates the binary value after it
is extracted when converting to a physical value using a DescRec.

3. Button Tables
The button tables (BoxRec and PadRec) have been deprecated and are slated for obsolete status. The ori-
ginal function of these tables was to provide touch screen or other alternative input support.

4. Data Point Definition Key Tables
These tables are used to validate fields of other tables in the database. The following is true unless
marked with an asterisk (*). These tables should not be modified by the user. The tables will only
change if new functionality is added to AccelNET.

4.1. RefKeys Table *
Table of RefName definitions.

RefNme The RefName.

RefVal An integer value for the RefName. Used to sort Desc records in the Label report.

RefDesc Comments field.

RefAttNme A more descriptive name.

4.2. DKeys Table
Table of DataType definitions.

DtNme The DataType name.

DtVal An integer value for the DataType.

DtDesc Comments field.

4.3. CrKeys Table
Table of display key (CrtKey) definitions.

CrNme The display key name.

CrVal An integer value for the display key.

Database Structure

43

CrDesc Comments field.

4.4. CtKeys Table
Table of control key (CtlKey) definitions.

CtNme The control key name.

CtVal An integer value for the control key.

CtDesc Comments field.

4.5. OwnKeys Table
Table of Owner definitions. Owner names correspond to task numbers in the control system.

OwnNme The owner name.

OwnVal The task number of the owner.

OwnDesc Comments field.

4.6. ScaKeys Table
Database scaling keys.

ScaNme The scaling key name.

ScaVal The scaling key value.

Comments Comments field.

4.7. DevKeys Table
Table of device type definitions.

DevTypeK Device type name.

DevTypeV An integer value for the device type.

DevDesc Comments field.

4.8. DrvKeys Table
Table of driver type definitions. The control system is designed in a way that allows data acquisition
from more than one type of data acquisition system at the same time. The driver type specifies which
data acquisition system to use.

Database Structure

44

DrvNme Driver name.

DrvVal An integer value for the driver type.

DrvDesc Comments field.

4.9. CmdKeys Table *
Deprecated (part of button tables).

4.10. QueKeys Table *
Deprecated.

5. Display Page Tables
The display page database is made up of several record types.

PgKeys contains the master records for a display page. There is one record in PgKeys for each page in
the system.

The rest of the records define display entities. There is one record for each entity on the screen. An en-
tity can be an alphanumeric field or an icon.

5.1. PgKeys Table
This table associates a display page name with a page number.

PgNme Page name.

PgVal Page number.

Dflag Display flag. The value of this field is either 'Y' or 'N'. If the value is 'Y', all of the records
associated with the page are displayed unless their individual Dflags are set to 'N'. If the
value is 'N', the entire page is inhibited from being displayed.

PgDesc Comments field.

5.2. CrtText Table
This table defines static text strings in a display page. These strings can be used for comments and other
permanent text.

Together PgNme and RecId form the key for this table.

PgNme Name of the page.

Validated by PgKeys.PgNme.

RecId A serial number used to identify the record.

CurX X coordinate on display page.

Database Structure

45

CurY Y coordinate on display page.

Dflag Display flag. The value of this field is either 'Y' or 'N'. If the value is 'Y', this record is dis-
played. If the value is changed while the page is displayed, the field is erased.

Width Width (in characters) of the string.

FontType Font setting to display the text.

Valid values are: default, big, and user1 through user8.

Text The string to be displayed.

5.3. CrtFixed Table
This table defines database fields for display.

PgNme Name of the page.

Validated by PgKeys.PgNme.

DFnme Type of field to display.

Validated by DFkeys.DFnme.

RecId A serial number used to identify the record.

CurX X coordinate on display page.

CurY Y coordinate on display page.

Dflag Display flag. The value of this field is either 'Y' or 'N'. If the value is 'Y', this record is dis-
played. If the value is changed while the page is displayed, the field is erased.

Width Width (in characters) of the string.

FontType Font setting to display the text.

Valid values are: default, big, and user1 through user8.

Label, Ref-
Name

Name of the parameter to display. If DFnme is set to Label or Name, only the Label must
be set. The RefName field may be NULL.

5.4. CrtDCpnt Table
This table defines Display/Control parameter sets for a display page. The first display parameter
(DCdisp1_Label, DCdisp1_DrefNme) is the one displayed on the screen at the given coordinates. The
DCdisp and DCctl fields work in sets. For example, when a DCpnt is selected on the screen, DCdisp1
will be displayed as the readback parameter and DCctl1 will be displayed as the control parameter. The
in DCdisp# and DCctl# identify the layer number. The first time an item is clicked, the first layer will
appear. Subsequent clicks will increment the layer.

PgNme Name of the page this record is associated with.

Database Structure

46

Validated by PgKeys.PgNme.

RecId A serial number used to identify the record.

CurX X coordinate on display page.

CurY Y coordinate on display page.

Dflag Display flag. The value of this field is either 'Y' or 'N'. If the value is 'Y', this
record is displayed. If the value is changed while the page is displayed, the field
is erased. However, the field may still be selected by the mouse until a new
page is loaded or the same page is reloaded.

Width Width (in characters) of the string.

FontType Font setting to display the text.

Valid values are: default, big, and user1 through user8.

DCdisp1_Label,
DCdisp1_DrefNme

First read back parameter.

DCdisp2_Label,
DCdisp2_DrefNme

Second read back parameter.

DCdisp3_Label,
DCdisp3_DrefNme

Third read back parameter.

DCdisp4_Label,
DCdisp4_DrefNme

Fourth read back parameter.

DCctl1_Label,
DCctl1_DrefNme

First control parameter.

DCctl2_Label,
DCctl2_DrefNme

Second control parameter.

DCctl3_Label,
DCctl3_DrefNme

Third control parameter.

DCctl4_Label,
DCctl4_DrefNme

Fourth control parameter.

5.5. CrtBut Table
Deprecated (part of button tables).

5.6. CrtICpnt Table
Icon display definition table. ICdisp and ICctl fields are treated in the same way as in the CrtDCpnt ta-
ble.

PgNme Name of the page this record is associated with.

Validated by PgKeys.PgNme.

ICtype Type of icon to display.

Validated by IconKeys.IconNme.

RecId A serial number used to identify the record.

GrpNme Name of the beamline region associated with this record.

Database Structure

47

Validated by GrpKeys.GrpNme.

CurX X coordinate on display page.

CurY Y coordinate on display page.

CurX2 Second X coordinate on display page. This field is used to stretch/modify the
geometry of the icon. A value of "0" will result in the default geometry for the
given plane.

CurY2 Second Y coordinate on display page. This field is used to stretch/modify the
geometry of the icon. A value of "0" will result in the default geometry for the
given plane.

ICrot Amount (in degrees) to rotate the icon from its base orientation (right hand co-
ordinates). A value of "0" will result in the no rotation.

ICscale Amount to scale the icon size. The default (and most common) size is 1.0.

Dflag Display flag. If the value is 'Y', this record is displayed. If the value is changed
while the page is displayed, the field is erased. However, the field may still be
selected by the mouse until a new page is loaded or the same page is reloaded.

ICicon_Label,
ICicon_DrefNme

Data point from which to get the icon color.

ICdisp1_Label,
ICdisp1_DrefNme

First Display parameter.

ICdisp2_Label,
ICdisp2_DrefNme

Second Display parameter.

ICdisp3_Label,
ICdisp3_DrefNme

Third Display parameter.

ICdisp4_Label,
ICdisp4_DrefNme

Fourth Display parameter.

ICctl1_Label,
ICctl1_DrefNme

First Control parameter.

ICctl2_Label,
ICctl2_DrefNme

Second Control parameter.

ICctl3_Label,
ICctl3_DrefNme

Third Control parameter.

ICctl4_Label,
ICctl4_DrefNme

Fourth Control parameter.

Comments Comments field.

6. Display Page Key Tables
These tables are used to validate fields of other tables in the database. These tables should not be modi-
fied by the user. The tables will only change if new functionality is added to AccelNET.

6.1. DFkeys Table
This table is used to validate entries in CrtFixed.DFnme.

DFnme Display field name.

DFval An integer value for the display field.

Database Structure

48

DFdesc Comments field.

See DFkeys(7) in the AccelNET manual pages for a list of valid DFkeys.

6.2. IconKeys Table
This table is used to validate entries in CrtICpnt.ICtype.

IconNme Icon name.

IconVal An integer value for the icon name.

IconDesc Comments field.

See iconkeys(7) in the AccelNET manual pages for a list of valid IconKeys.

7. Interlock Tables
Interlocks are used to provide conditional actions on data points. They are usually used to provide soft-
ware equivalents of hardware interlocks. An example might be to prevent a Faraday cup from moving
out of the beamline unless the next beamline valve is open. The beamline valve cannot be opened unless
there is good pressure on either side of it. Icon colors are also determined by entries in this table.

Interlocks are defined by first choosing a data point to be acted on. The point chosen is entered into a re-
cord in the ChkList table.

An interlock chain is created by defining records in the ChkPoint table. The ChkPoint table defines what
data points will affect the action. The way in which the data point is evaluated is determined by the CP-
type field.

The ChkAct table looks at the word formed by the entries in ChkPoint to determine what will happen to
the data point in ChkList. If the word matches the checked criteria, a new value is returned for the Chk-
List data point.

The ChkAlarm table is processed in a similar way that ChkAct is processed, but returns an error mes-
sage to the user, instead of a value to the data point.

7.1. ChkList Table
This table defines the data point to be acted on. When a request is made to modify a data point listed in
this table, the chain is started. A timer is started lasting the timeout value (in seconds) of TMOvalue. If
the interlock does not match an entry in ChkAct by the end of the timer, the default value (Value) is
entered into the data point.

RecId A serial number used to identify the record.

CLdskey_Label, CLd-
skey_DRefNme

Data point to be acted on.

Value Value to write into the data point if there is no match in ChkAct table.

TMOvalue Amount of time to wait before writing the default value.

Comments Comments field.

Database Structure

49

7.2. ChkPoint Table
This table defines the data points from which to collect data for interlock evaluation. The records in this
table are used to build an evaluation word. An evaluation word is the composite of each record's result
specified for the interlock chain. Each record defines an offset (bit) position in the evaluation word to
store the result.

MrecId RecId of the Chklist entry that this record is associated with.

Validated by ChkList.RecId.

RecId A serial number used to identify the record.

CPdesc_Label, CP-
desc_DRefNme

Data point to obtain information from.

CPtype Type of evaluation to be performed.

Validated by CPTkeys.CPTnme.

Offset Offset in the evaluation word to write the evaluation into.

LimLo Set lower limit for evaluation in certain values of CPtype.

LimHi Set upper limit for evaluation in certain values of CPtype.

Comments Comments field.

7.3. ChkAct Table
The value of the evaluation word is filtered and compared using Mask and Mask2 in this table. The
Mask field defines which bits of the evaluation word to look at. The Mask2 is compared to the bits of
the evaluation word defined by Mask. If there is a match, Value is written to the data point described in
ChkList.DSkey.

MrecId RecId of the ChkList entry that this record is associated with.

Validated by ChkList.RecId.

RecId A serial number used to identify the record.

Mask Bits in the evaluation word to be checked. A bitwise 'AND' operation is performed on this
field and the evalution word to generate a check word.

Mask2 Bit pattern to be matched. This is compared to the previously generated check word.

Value Value written to the data point described in ChkList.DSkey if Mask2 is identical to the
check word.

Comments Comments field.

7.4. ChkAlarm Table
This table contains information needed to select an alarm message if the interlock evaluation fails. The
same method of processing Mask and Mask2 in ChkAct is used to process ChkAlarm. Instead of a value

Database Structure

50

being written into the data point, a message is displayed to the user.

MrecId RecId of the ChkList entry that this record is associated with.

Validated by ChkList.RecId.

RecId A serial number used to identify the record.

Mask Bits in the evaluation word to be checked. A bitwise 'AND' operation is performed on this
field and the evalution word to generate a check word.

Mask2 Bit pattern to be matched. This is compared to the previously generated check word.

Message Error message.

7.5. CPtype Field Usage
See cp_type(7) in the AccelNET manual pages for a list of valid CPtypes.

8. Numeric Processor Tables
The numeric processing system allows simple algebraic manipulation of data points to form a value to
be written into a data point. This is used to perform calculations such as total injection voltage.

Just like the interlock tables, the numeric processor works off a chaining system. The data point to be af-
fected is set in the NumList table.

The NumPoint table is used to perform the algebraic operations. The operations are peformed in order
based on RecId. NPtype is used to define what algebraic function to perform (e.g. add, subtract, multipy,
divide, sin, cos). A chain is started with an initial stored value of 0. The first record usually inserts an
initial value using 'load' or 'add' as the NPtype. When a record is processed, the data point specified by
NPdskey is multiplied by the Scale field to create the operand. If NPdskey is NULL, the Scale field is
used as a constant operand in the calculation. Once the operand is determined, the operation specified by
NPtype is evaluated on the stored value and operand. The result is placed in the stored value. This con-
tinues until all of the records in the chain have been processed. Once the chain has completed, the result-
ing stored value is written to the data point specified in NumList.

To facilitate complex algebraic equations, four subtotal values are available. They can be used by ap-
pending '_S#' to NPtype, where # is 1 through 4. Once the subtotal has been calculated, it can be evalu-
ated into the main total using 't_add_S#', 't_sub_S#', 't_mul_S#', or 't_div_S#'. When the above evalu-
ations are done with the main total, the subtotal is automatically cleared.

8.1. NumList Table
This table defines the data point to be acted on.

RecId A serial number used to identify the record.

NLdskey_Label,
NLdskey_DRefNme

Name of the data point to write the result into.

Comments Comments field.

Database Structure

51

8.2. NumPoint Table

MrecId RecId of the NumList entry that this record is associated with.

Validated by NumList.RecId.

RecId A serial number used to identify the record.

NPtype Type of algebraic operation to perform on this point and the accumulated value.

Validated by NPTkeys.NPTnme.

NPdskey_Label, NP-
dskey_DRefNme

Data point to obtain information from. If these values are NULL, the value of 1
is assumed.

Scale Value obtained from the database is multiplied by this before evaluation. A
good use of this is to invert the sign of the database value with -1. By using
NULL for NPdskey, this field can be used as a constant.

Comments Comments field.

8.3. NPtype Field Usage
See np_type(7) in the AccelNET manual pages for a list of valid NPtypes.

9. Interlock and Numeric Processor Key Tables
These tables are used to validate fields of other tables in the database. These tables should not be modi-
fied by the user. The tables will only change if new functionality is added to AccelNET.

9.1. CPTkeys Table
This table is used to validate entries in ChkPoint.CPtype.

CPTnme ChkPoint type name.

CPTval An integer value for the ChkPoint type name.

CPTdesc Comments field.

9.2. NPTkeys Table
This table is used to validate entries in NumPoint.NPtype.

NPTnme NumPoint type name.

NPTval An integer value for the NumPoint type name.

NPTdesc Comments field.

Database Structure

52

10. CAMAC Interface Wiring Tables
10.1. JackRec Table

This table contains the jack number and jack types for every connector in the interfaces. It is used to val-
idate connector number entries in the RPrecord, Zrecord, and Trecord tables and to specify connector
type on some of the reports.

The two fields, JackTypA and JackTypB, allow specification of both halves of the connector set.

JackNo Name of the connector.

JackTypA Connector type.

JackTypB Connector type.

Comments Comments field.

10.2. RPrecord Table
This table specifies a connection for one pair in a device connector on the interface.

RPdskey_Label, RP-
dskey_DRefNme

Parameter associated with this pair.

RPpair Pair number of the parameter.

RPjack Jack this connection is located in.

PinA First pin in the pair.

PinB Second pin in the pair.

ColorA Color of the first wire in the pair.

Validated by ColKeys.ColNme.

ColorB Color of the second wire in the pair.

Validated by ColKeys.ColNme.

SigNameA Name of the signal associated with the first wire in the pair.

SigNameB Name of the signal associated with the second wire in the pair.

Buss Bus to connect to in order to obtain power. If no connection is required, use
"none" in this field.

Validated by BusKeys.BusNme.

BussP1 First bus pin.

BussP2 Second bus pin.

Comments1 Comments field.

Database Structure

53

Comments2 Comments field.

10.3. Zrecord Table
This table is used to define a connection point to a CAMAC module. Connection points to modules are
associated with DataRecs.

ZrecId RecId of the DataRec this record is associated with.

Zpair Wire pair number for the RecId.

PinA First pin in the pair.

PinB Second pin in the pair.

Zjack Jack this connection is located in.

Comments1 Comments field.

Comments2 Comments field.

10.4. Trecord Table
This table is used to provide connection pairs between any two jacks in the interface without the use of
data points.

Typically this is used where connections need to be made between two points in an interface, but there is
no entry in the database that corresponds to the signal.

For example:

1. If there are two interfaces associated with a single CAMAC crate, signals often need to be routed
from one interface to the other through the trunk cable. In this case it is used to pass signals on the
destination side of the jumper's connection to the device connector.

2. It is used to make the shield connections for the device cables. In this case the destination connector
is a ground block inside the interface and there is only one wire in the pair.

3. In cases where signals must be passed from connector to another without involving CAMAC. This
can happen when hardware interlocks need to be passed between devices.

The fields in the Trecord table are:

TRindex Index number used to identify the record.

JackA "Source" jack.

Validated by JackRec.JackNo.

JackB "Destination" jack.

Validated by JackRec.JackNo.

Database Structure

54

PinA1 First "source" pin.

PinA2 Second "source" pin.

PinB1 First "destination" pin.

PinB2 Second "destination" pin.

ColorA First wire color pin.

Validated by ColKeys.ColNme.

ColorB Second wire color pin.

Validated by ColKeys.ColNme.

SigNameA First signal name.

SigNameB Second signal name.

Comments1 "Source" connection first comment field.

Comments2 "Source" connection second comment field.

Comments3 "Destination" connection first comment field.

Comments4 "Destination" connection second comment field.

11. CAMAC Interface Wiring Information Key
Tables

These tables are used to validate fields of other tables in the database. These tables should not be modi-
fied by the user. The tables will only change if new functionality is added to AccelNET.

11.1. ColKeys Table
Wire Color Key table. This table is used to validate wire colors entered into RPrecord and Trecord color
fields. The color value may be used to sort by wire color.

ColNme Color name.

ColVal An integer value for color name.

ColDesc Comments field.

This is list of valid wire colors that may be entered into the color fields in the RPrecords and Trecord.
All of the entries listed appear in the ColKeys table.

BK Black

BN Brown

RD Red

Database Structure

55

OR Orange

YL Yellow

GN Green

BU Blue

VI Violet

GY Gray

WH White

n/a None

SHLD Shield

11.2. BusKeys Table
The CAMAC interface usually contains one or more power buses. They are used to provide power to
drive relays and other such devices. Sometimes the bus is switched to provide interlocking functions.
For example, in some machines the tank pressure switch controls power to a bus in the interface. The
power from the switched bus is connected to the rotating shaft, gvm power status control, etc. If the tank
is under vacuum, power is not applied to the bus. Even if the control system may have told the device to
be on, it won't be. The BusKeys table allows the buses to be given names and incorporated in the wire
lists.

Note

This table is slated for deprecation/obsolete status and will be replaced by JackRec, but is still
in active use.

BusNme Bus Name.

BusVal An integer value for the bus name. This field is provided in order to allow an arbitrary sort
by bus.

BusDesc Comments field.

This is a list of common entries for RPrecord.Buss. All of the entries listed should appear in the Bus-
Keys table.

none No bus connection.

C24 Camac 24v pwr supply.

Nlk1 Interlock Bus 1.

Nlk2 Interlock Bus 2.

11.3. JkKeys Table

Database Structure

56

This table is used to validate connector types entered into JackRec.JackTypA and JackRec.JackTypB.

JKtype Name of the jack type.

JKval An integer value for the jack type. This field is provided in order to allow an arbitrary sort by
jack type.

JKdesc Comments field.

12. Report Usage
12.1. Invoking Reports

dbreport <report_type> <report_arg>

Alarms List the interlock records.

CM List the CAMAC modules.

key <arg> List records of <arg> Key table. (e.g. RefKeys)

msg <arg> List records of <arg> Message table. (e.g. MsgTbl)

Label List major database fields, sorted by Label, Desc.

RecId List records of the DataRec table sorted by RecId.

Module List records of the DataRec table sorted by Module Address.

mb List the database scaling coefficients.

lim List the database spans and limits.

JackRec List records of the JackRec table.

RPrecord List records of the RPrecord table.

Zrecord List records of the Zrecord table.

type List valid values of <arg> for generating wiring reports. These values are con-
tract dependent.

Example: 'C1I1' means Crate 1, Interface 1.

Buss <arg> Generate Buss connection list.

Buss2 <arg> Generate Buss2 connection list.

Rpanel <arg> Generate rear panel to Z pin wiring list.

Zpanel <arg> Generate Z pin to rear panel wiring list.

composite <arg> Generate a composite of Buss, Buss2, Rpanel, and Zpanel wiring lists.

Database Structure

57

12.2. Printing Reports
Most reports generate a file with a name of the form <report_type>.lst where <report_type> is the argu-
ment to dbreport. All reports are stored in $LST, which can be expanded to /AccelNET/pg/$CONF/lst/.
For example "Label.lst" is the report file from "dbreport Label". The report may be printed by using the
command "lp <arg>" where <arg> is the name of the report file.

13. Report Formats
13.1. Label report

The Label report shows an overview the database. The report is sectioned by LabelRec entries and de-
tailed by RefName.

Label Device name (LabelRec.Label).

Name Long device name (LabelRec.Name).

LabelRec Comments Comments (LabelRec.Lcomm).

Ref Integer value associated with the RefName (RefKeys.RefVal).

RefName Parameter name (DescRec.RefName).

AttName Long parameter name (RefKeys.RefAttNme).

Units Physical units (DescRec.Units).

DataType Data conversion key (DescRec.DataType).

CrtKey Display format key (DescRec.CrtKey).

CtlKey Device control key (DescRec.CltKey).

Owner Name of the task that owns the record (DescRec.Owner).

ScaKey Parameter scaling key (DescRec.ScaKey).

WpermD Write permissions (DescRec.WpermD).

Message Name of the Message List if DataType=Ldisp (MsgKeys.MsgNme).

SpanMin Physical value that corresponds to the minimum binary value of the data
point (DescRec.SpanMin).

SpanMax Physical value that corresponds to the maximum binary value of the data
point (DescRec.SpanMax).

PhyMin Minimum physical value for write limit or read back limit checking
(DescRec.PhyMin).

PhyMax Maximum physical value for write limit or read back limit checking
(DescRec.PhyMax).

Sz Size of the binary data field (DescRec.Size).

Os Offset into the data word from which to extract the binary data

Database Structure

58

(DescRec.Offset).

DR DRkey value (DescRec.DRkey).

Id RecId of DataRec associated with this parameter
(DescRec.Addr/DataRec.RecId).

DevType Device type (DataRec.DevType).

DrvKey Data acquisition driver name (DataRec.Driver).

C CAMAC crate number (DataRec.Crate).

N CAMAC slot number (DataRec.Slot).

ChNo Module channel number (DataRec.ChanNo).

DT DTkey value (DataRec.DTkey).

Desc Comments Comments (DescRec.Comments).

13.2. RecId and Module report
The RecId and Module reports are the same information sorted two different ways. The RecId report is
sorted by DataRec.RecId in ascending order. The Module report is sorted by Driver, C, N, DevType,
ChNo in ascending order.

Both forms of the report are a cross reference listing showing which parameters (DescRecs) in the data-
base are associated with data acquisition channels.

RecId RecId (DescRec.Addr/DataRec.RecId).

DT DTkey value (DataRec.DTkey).

DrvKey Data acquisition driver name (DataRec.Driver).

C CAMAC crate number (DataRec.Crate).

N CAMAC slot number (DataRec.Slot).

ChNo Module channel number (DataRec.ChanNo).

Sz Size of the binary data field (DescRec.Size).

Os Offset into the data word from which to extract the binary data (DescRec.Offset).

DevType Device type (DataRec.DevType).

Label Label of the parameter (DescRec.Label).

RefName RefName of the parameter (DescRec.RefName).

AttName Long name associated with the RefName (RefKeys.RefAttNme).

13.3. JackRec report

Database Structure

59

This is a listing of all of the jack numbers in the system.

JackNo Jack number (JackRec.JackNo).

JackTypA Jack type for end A (JackRec.JackTypA).

JackTypB Jack type for end B (JackRec.JackTypB).

13.4. RPrecord report
This is a listing of all of the records in the RPrecord table organized by jack number and pair number.

Jack Jack number (JackRec.JackNo).

Pr Pair number in the jack.

Pin For each record there are two possible pin numbers listed, one above the other. The top
one is the first pin in the pair (RPrecord.PinA). The bottom one is the second pin in the
pair (RPrecord.PinB).

Color For each record there are two possible colors listed, one above the other. The top one is
the first color in the pair (RPrecord.ColorA). The bottom one is the second color in the
pair (RPrecord.ColorB).

SigName For each record there are two possible signal names listed, one above the other. The top
one is the first signal name in the pair (RPrecord.SigNameA). The bottom one is the
second signal name in the pair (RPrecord.SigNameB).

BussP1 First side of the buss connection, if needed (RPrecord.BussP1).

Buss Name of the bus this signal is passed through, if needed (RPrecord.Buss).

BussP2 Second side of the buss connetion, if needed (RPrecord.BussP2).

Label, Ref-
Name

Name of the parameter this connection is associated with (DescRec.Label,
DescRec.RefName).

Comments Comments (RPrecord.Comments1/RPrecord.Comments2).

13.5. Zrecord report
This is a listing of all of the records in the Zrecord table organized by RecId and pair number.

RecId RecId of the DataRec this record is associated with (Zrecord.ZRecId).

DT DTkey value (DataRec.DTkey).

Driver Data acquisition driver name (DataRec.Driver).

C CAMAC crate number (DescRec.Crate).

N CAMAC slot number (DataRec.Slot).

Database Structure

60

ChNo Module channel number (DataRec.ChNo).

DevType Device Type (DataRec.DevType).

Jack Jack number (Zrecord.Zjack).

Pr Pair number of the RecId (Zrecord.Zpair).

Pin For each record there are two possible pin numbers listed, one above the other. The top
one is the first pin in the pair (Zrecord.PinA). The bottom one is the second pin in the pair
(Zrecord.PinB).

Comments Comments (Zrecord.Comments1, Zrecord.Comments2).

13.6. Rpanel report
This is a listing of all of the connections in the interfaces organized from the device connectors to the Z
connectors or other device connectors. This report is customized for each contract.

If a connection is made from one rear panel connector to another (one use of the Trecord), the connec-
tion will appear twice in the listing. Once from the first connector, again from the second connector.

At the start of each new connector, the page is ejected and the jack number and jack type are printed.

Label, Ref-
Name

If the record being listed is a RPrecord, the parameter name from the database is listed on
the first line of the signal pair (DescRec.Label, DescRec.RefName).

If the record being listed is a Trecord, the Comments1 and Comments2 fields are listed on
the first line and the Comments3 and Comments4 fields are listed on the second line.

SigName For each record there are two possible signal names listed, one above the other. The top
one is the first signal name in the pair based on the type of record (RPrecord.SigNameA
or Trecord.SigNameA). The bottom one is the second signal name in the pair based on the
type of record (RPrecord.SigNameB or Trecord.SigNameB).

Pin For each record there are two possible pin numbers listed, one above the other. The top
one is the first pin in the pair based on the type of record (RPrecord.PinA, Trecord.PinA1,
or Trecord.PinB1). The bottom one is the second pin in the pair based on the type of re-
cord (RPrecord.PinB, Trecord.PinA2, or Trecord.PinB2).

Color For each record there are two possible colors listed, one above the other. The top one is
the first color in the pair based on the type of record (RPrecord.ColorA or Tre-
cord.ColorA). The bottom one is the second color in the pair based on the type of record
(RPrecord.ColorB or Trecord.ColorB).

Pin First bus pin, if used (RPrecord.BussP1).

Buss Bus the pair is routed through, if used (RPrecord.Buss).

Pin Second bus pin, if used (RPrecord.BussP2).

Z conn Jack number of the connector this pair is connected to (Zrecord.Zjack).

Pin For each record there are two possible pin numbers listed, one above the other. The top
one is the first pin in the pair based on the type of record (Zrecord.PinA, Trecord.PinA1
or Trecord.PinB1). The bottom one is the second pin in the pair based on the type of re-
cord (Zrecord.PinB, Trecord.PinA2, or Trecord.PinB2).

Database Structure

61

RecId RecId of the DataRec this entry is associated with (DataRec.RecId).

C CAMAC crate number (DataRec.Crate).

N CAMAC slot number (DataRec.Slot).

Ch Module channel number (DataRec.ChNo).

Os Offset into the data word from which to extract the binary data (DescRec.Offset).

Comments For each record there are two comments listed, one above the other. The top one is the
first comment field, depending on the type of record (RPrecord.Comments1 or Tre-
cord.Comments3). The bottom one is the second comment field, depending on the type of
record (RPrecord.Comments2 or Trecord.Comments4).

13.7. Zpanel report
This listing is similar the Rpanel report except that it is from the Z connector point of view. This report
is customized for each contract.

Z conn Jack number of the Z connector this pair is connected to (Zrecord.Zjack).

Pin There are two possible pin numbers listed for each record, one above the other. The top
one is the first pin in the pair (Zrecord.PinA). The bottom one is the second pin in the pair
(Zrecord.PinB).

Color There are two possible colors listed for each record, one above the other. The top one is
the first color in the pair (RPrecord.ColorA). The bottom one is the second color in the
pair (RPrecord.ColorB).

Pin First bus pin, if used (RPrecord.BussP1).

Buss Bus the pair is routed through, if used (RPrecord.Buss).

Pin Second bus pin, if used (RPrecord.BussP2).

RP conn Jack number of the connector this pair is connected to (RPrecord.RPjack).

Pin There are two possible pin numbers listed for each record, one above the other. The top
one is the first pin in the pair (RPrecord.PinA, Trecord.PinA1, or Trecord.PinB1). The
bottom one is the second pin in the pair (RPrecord.PinB, Trecord.PinA2, or Tre-
cord.PinB2).

Label, Ref-
Name

If the record being listed is a RPrecord, the parameter name from the database is listed on
the first line of the signal pair (DescRec.Label, DescRec.RefName).

If the record being listed is a Trecord, the Comments1 and Comments2 fields are listed on
the first line and the Comments3 and Comments4 fields are listed on the second line.

SigName There are two possible signal names listed for each record, one above the other. The top
one is the first signal name in the pair based on the type of record (RPrecord.SigNameA
or Trecord.SigNameA). The bottom one is the second signal name in the pair based on the
type of record (RPrecord.SigNameB or Trecord.SigNameB).

RecId RecId of the DataRec this entry is associated with if it is a RPrecord (DataRec.RecId).

Pr Pair number of the Zrecord associated with this entry if it is a RPrecord (Zrecord.Zpair).

Database Structure

62

C CAMAC crate number (DataRec.Crate).

N CAMAC slot number (DataRec.Slot).

Ch Module channel number (DataRec.ChNo).

Os Offset into the data word from which to extract the binary data (DescRec.Offset).

Comments If the record being processed is a RPrecord, then RPrecord.Comments1 and
RPrecord.Comments2 are used. Otherwise Zrecord.Comments3 and Zrecord.Comments4
are used.

14. BuildMB Process
After the database is entered, the data conversion coefficients for all of the data points must be calcu-
lated. This is done by invoking the BuildMB family of programs.

The buildmb script should be run after the initial creation of a new database, as well as when one of the
following has been changed in the DescRec table: SpanMin, SpanMax, DataType, Size, DRkey, MB-
convKey, or MBsetIncKey. If MBconvKey is not set to 'Y', buildmb will ignore the record when calcu-
lating M and B. If MBsetIncKey is not set to 'Y', buildmb will ignore the record when calculating IncV-
al.

Invoke a buildmb function by typing the following (as user 'postgres'):

buildmb <arg>

Lin Build coefficients for records with DataType = 'Lin'.

NLin Build coefficients for records with DataType = 'NLin'.

Alog Build coefficients for records with DataType = 'Alog'.

NAlog Build coefficients for records with DataType = 'NAlog'.

CVG Build coefficients for records with DataType = 'CVG'.

CVG_275 Build coefficients for records with DataType = 'CVG_275'.

CCVG Build coefficients for records with DataType = 'CCVG'.

PVG Build coefficients for records with DataType = 'PVG'.

TCG Build coefficients for records with DataType = 'TCG'.

IGCgp Build coefficients for records with DataType = 'IGCgp'.

LinSetInc Set IncVals for records with DataType = 'Lin'. See rules below.

NLinSetInc Set IncVals for records with DataType = 'NLin'. See rules below.

all Invokes all of the arguments.

Here is a list that explains, by DataType, how buildmb treats a record.

Database Structure

63

Lin Constructs coefficients for all cases. IncVal is set to the value of M for records where
DataType = 'Lin' and Owner = 'CrtTsk'.

NLin Constructs coefficients for all cases. IncVal is set to the value of M for records where
DataType = 'NLin' and Owner = 'CrtTsk'.

Alog Constructs coefficients for all cases. IncVal is not set.

NAlog Constructs coefficients for all cases. IncVal is not set.

BCD Not supported. When used, coefficients should be entered manually, usually with M =
1.0 and B = 0.0.

TCG * Sets M and B to the correct values to provide a scaler between 0 and 10 for the conver-
sion routine. IncVal is not set.

CVG * Sets M and B to the correct values to provide a scaler between 0 and 10 for the conver-
sion routine. IncVal is not set.

CVG_275 * Sets M and B to the correct values to provide a scaler between 0 and 10 for the conver-
sion routine. IncVal is not set.

CCVG * Sets M and B to the correct values to provide a scaler between 0 and 10 for the conver-
sion routine. IncVal is not set.

PVG * Sets M and B to the correct values to provide a scaler between 0 and 10 for the conver-
sion routine. IncVal is not set.

Ldisp Not supported. When used, coefficients should be entered manually, usually with M =
1.0 and B = 0.0.

Raw Not supported. When used, coefficients should be entered manually, usually with M =
1.0 and B = 0.0.

IGCgp * Sets M and B to the correct values to provide a scaler between -10 and 0 for the conver-
sion routine. IncVal is not set.

AlinLog Constructs coefficients for all cases. IncVal is not set.

NAlinLog Constructs coefficients for all cases. IncVal is not set.

DataTypes marked with an * are handled by the runtime system in the following way: When the data(X)
is processed, M and B are applied to scale the value between the desired range (Y = MX + B). The
scaled value is then sent to what is called a piece table. A piece table is a predefined set of steps/ranges.
Each range contains an internal set of M and B values. The internal set of M and B are applied using the
same equation to the scaled value to obtain the final physical value.

15. Table Translation
The database must be converted to the correct format before it can be used by the control system. The
format conversion is done by a family of programs that all have roughly the same structure.

The table to be converted is extracted from the Postgres database by a SQL query and placed in a file.
When the table is extracted, a filter is applied to substitute integer values for names on certain fields. For
example, in the DescRec table, the name in the DataType field is substituted for the integer value known
by the runtime system. In the above example, the Dkeys table is considered an immutable table. This
means that it cannot/should not be changed. The table is in place to prevent bad entries in database. The

Database Structure

64

actual integer values are defined in the filter/AccelNET source code. The Dkeys table will only be
changed when there is a change in AccelNET that affects it. The result of this is an ASCII file where
each line contains a number of fields separated by a field separator (usually a vertical bar '|') and termin-
ated by a linefeed.

A program then translates the created file into the record structure used by the control system. This pro-
cess involves steps such as converting strings of characters into floating point numbers. The program
that does the translation is specifically tailored for the table in question, producing a new result file.

It is presently arranged so that the extracted Postgres tables occupy a directory. The SQL scripts share
the directory with the extracted files along with a shell script that is used to translate the tables.

The table translation programs, invoked from a shell script, are in a separate directory. They read from
the directory containing the extracted files and write into another directory.

16. Using SQL
As you become familiar with the fields of the database and how to manipulate them through the data
entry screens you may want to learn to use the tools the Postgres database manager provides for manipu-
lation of the database.

SQL is a programming language that allows records to be added, deleted, and modified to/from the data-
base. It makes adding large quantities of records (for example, if a new beam line is added to the sys-
tem) very easy to do. Consult the Postgres manuals for more information.

All of the reports described in this manual are generated using SQL, some of the UNIX tools, and a re-
port written in C. Examine the report scripts provided with the system for examples.

For more information on SQL, visit http://www.postgres.org/docs/ as well as other online or printed
documentation.

17. Database Construction Tools
To help facilitate construction and maintenance of the database a collection of tools have evolved over
time. This collection is not guaranteed to be complete. It is provided as a convenience to the customer.

Using the tools requires a working knowledge of the database design, SQL, and the UNIX shell. There
are many existing script files to serve as examples.

Database Structure

65

Chapter 9. Editing
1. Introduction

Editing the control system database requires that you understand the database structure as covered in
previous chapters.

To effectively edit and apply changes to the runtime system, you will need access to both the csadmin
and postgres users. The actual editing is performed by the postgres user. The csadmin user is only
needed to perform a restart of the control system. A restart is required for new additions and modifica-
tions to certain tables.

For the remainder of this chapter, the contract name 'sample1' will be used.

2. Console Editing
2.1. Starting a new Contract and Database

If you want to edit an existing database, skip this section.

A contract is typically cloned from an existing, similar contract. The following is how to clone a con-
tract named source1 to sample1.

Start by making a complete copy of the contract directory.

csadmin$ cd /AccelNET
csadmin$ cp -R source1 sample1

Once this has been done, edit /AccelNET/sample1/environ. Set CONF=sample1 at the very least.

The following commands will create the runtime database directory structure.

csadmin$ cd /AccelNET/db
csadmin$ make_db_dir sample1

Next make a postgres contract directory, setup the editing tools environment, and create a default Accel-
NET database. The following should be executed as the postgres user.

postgres$ cd /AccelNET/pg
postgres$ make_contract sample1
postgres$ make_tools sample1
postgres$ /AccelNET/pg/sys/dbcreate/builddb/dbcreate sample1
postgres$ cd /AccelNET/pg/sample1
postgres$ cp ../source1/senvi .

You should now have the start of an AccelNET database.

After the database has been created, verify that /AccelNET/environ is linked to /Accel-
NET/sample1/environ and that CONF=sample1 is set in the file. Edit the senvi file to set
CONF=sample1 as well. Logout and back in as the postgres user for the changes to take effect.

66

2.2. Retrieving Tables
In order to modify entries in the database, a table or portion of a table must be retrieved from Postgr-
eSQL. To accomplish this task, the fetch command will be used.

postgres$ cd $TOOLS
postgres$ fetch Label

A file called Label.lst containing the LabelRec table is produced. This file may be opened with any
unix/linux text editor. Each line of the file contains a single entry of the table. Fields are separated by a
vertical tab (|). From this point, fields can be edited and entries may be added.

2.3. Updating Tables
Updating a table will modify existing and insert new entries. It is usually best to work from a freshly
pulled table or to clone from an existing database. Once the changes have been made to the text file,
save it and return to the prompt. To update/insert, use the update command from the tools directory.

postgres$ update Label

Watch the output for any errors. Errors can be caused by invalid values, incorrect field positions, or table
relation conflicts. If an error occurs on an entry, the update or insertion of that entry will not occur.

2.4. Deleting entries
Deleting entries can be one of the most frustrating tasks with an AccelNET database. This is due to the
nature of using a relational database and currently available tools. A basic knowledge of SQL is required
to delete entries. As the postgres user, connect to the database using the psql command.

postgres$ psql sample1

A welcome message should display giving you a list of help commands and a prompt 'sample1=>' wait-
ing for a command.

For this example, we will delete an entry out of the DescRec table. We are going to attempt to delete the
entry for label 'FC 01-1' and refname 'PosSC' from the table. This will only match one entry in the
DescRec table because of the primary keys set for the table. It is important to know what is going to
match your delete request to avoid unwanted removal of entries.

sample1=> DELETE FROM DescRec WHERE Label='FC 01-1' AND RefName='PosSC';

Here is where the trouble will most likely start. The majority of the time, an error will be displayed stat-
ing that it cannot delete the entry. This is what is called a trigger. A trigger message will look much like
this:

NOTICE: can't delete |FC 01-1|PosSC | it is in use by ChkPoint.CPdesc

A quick glance will tell you that you tried to delete FC 01-1|PosSC and that a reference to it exists in the
ChkPoint table. To resolve this, you must delete the reference(s) to the parameter in the ChkPoint table.
In addition, pay attention to where you are deleting from. In cases such as the interlock tables (ChkList,
ChkPoint, ChkAct, ChkAlarm), related tables may need to be modified to refelect the deletion. See the

Editing

67

appendix titled "Resolving PostgreSQL Trigger Errors" for a more in depth look at resolving trigger er-
rors.

The easiest way to find which entry contains the offending parameter is to retreive the table to a text file
and perform a search. To exit psql simply type \q and you will be returned to the normal shell prompt.
After finding the entries, decide how they should be handled. Some entries, such as those in the
crtDCpnt or crtICpnt tables may contain parameters that are still in use. In this case, it is probably best
to replace the offending parameter values with NULL|NULL. Another case would be where the para-
meter is taking up an entry that will no longer be needed. Use psql and a DELETE statement to remove
the entry. Again, pay close attention to the statement you use to delete the entry so as not to harm the
rest of the table. Once you have removed the offending entries, attempt the original DELETE statement.
If all of the offending entries in all of the tables have been removed, the delete will be succesful. Repeat
the above process until the delete is succesful.

2.5. Database Conversion
Once modifications to the database are complete, they need to be converted to a format the runtime sys-
tem can use. To accomplish this task, the dbconvert command is used. The command dbconvert all
will convert all of the tables to the runtime format. Individual tables can be converted by specifying
them in the same way fetch and update are called. In general, it is best to use the dbconvert all instead
of converting individual tables. This will decrease the chance of not converting a needed table. The
speed of current processors is able to do the operations fast enough.

There are a few special cases that require prior preparation for conversion. The first case is with the
DescRec table. The DescRec table has flags that allow for M, B, and IncVal to be calculated. To do this
calculation, you can use the buildmb all command. The second case is with any Crt table. The Crt
tables calculate their location coordinates based on the RecId. This is done using the convertX and con-
vertY commands.

2.6. Applying Changes
Now that the desired editing has been completed and the database has been converted, the runtime sys-
tem must be notified of the new changes. There are two scenarios for notifying the runtime system.

The first scenario is the most reliable as well as the easiest. The disadvantage is that the control system
must be halted.

1. Clear the runtime database and stop all of the AccelNET clients.

csadmin$ dbclear

2. Load in the new runtime database from the converted files.

csadmin$ dbload

3. Start the AccelNET clients.

csadmin$ startio

Editing

68

The second scenario allows modification of the runtime database without the need to stop the AccelNET
clients. Be aware that this method only works on certain tables and fields in the database. As a rule of
thumb, this method will not allow addition of new records, changes to primary keys, or changes to fields
that are used as pointers.

Here is a fairly complete list of modifiable fields:

Table Name Fields Allowed

LabelRec Name

DescRec Units, DataType, CrtKey, CtlKey, Owner, WpermD, ScaKey, SpanMin, SpanMax,
PhyMin, PhyMax, IncVal, M, B, DRkey, Size, Offset, Dcomm, MBconvKey, MBset-
IncKey

Although the listed fields are modifiable, it may be dangerous to change Size and Off-
set on a running system.

MsgTbl MsgText

PgKeys Dflag, PgDesc

CrtText CurX, CurY, Dflag, Width, FontType, Text

CrtFixed CurX, CurY, Dflag, Width, FontType

CrtDCpnt CurX, CurY, Dflag, Width, FontType

CrtICpnt CurX, CurY, CurX2, CurY2, ICrot, ICscale, Dflag

ChkList Value, TMOvalue

ChkPoint CPtype, Offset, LimLo, LimHi

ChkAct Mask, Mask2, Value

ChkAlarm Mask, Mask2, Message

NumPoint NPtype, Scale

To perform this type of modification, the dbmodify command is used as the postgres user. The follow-
ing is an example using the DescRec table.

postgres$ dbmodify Desc

In addition to the listed fields above, there are a few things to consider. For example, modifications to
the interlock and numeric chains will not be evaluated immediately. Modifications will be evaluated
when a watched parameter changes value in the ChkPoint or NumPoint table for the chain. It may be
helpful to use the cache command within Xcrt to refresh the currently displayed page. This can fix
drawing errors while moving icons around the diagramatic display.

3. Graphical Editing
3.1. About pgEdit

Editing

69

1 http://java.sun.com/

pgEdit is a combination of server-side scripts and a Java applet designed to modify an AccelNET data-
base graphically. The goal of pgEdit is to allow someone with less console and/or SQL experience to
make simple changes to AccelNET.

Although this application is not yet complete, it is quite functional in its current state. If you encounter
problems/bugs with this application, please contact NEC with a description of the problem so that it may
be addressed.

All of the commonly edited tables have basic insert, update, and delete abilities. The following com-
mands have also been implemented: dbconvert all, buildmb all, convertX, and convertY. The follow-
ing reports may also be generated and viewed: Module, CAMAC, Alarms, Label, RecId, M&B, Limits,
JackRec, RPrecord, and Zrecord.

Note

Because pgEdit is still under development, it may not have been installed and/or configured on
your control system. Please contact NEC if you wish to test this software.

3.2. Using pgEdit
TODO: write me!

pgEdit can be accessed using a Java1 enabled web browser such as Mozilla, FireFox, Safari, Opera,
NetScape, or Internet Explorer. The following is a set of directions on how to access the editor.

1. Open your Java enabled web browser.

2. Point the browser to the control system's hostname. If you are seated at the control system, the host-
name 'localhost' will work.

You will be presented with a web page tailored for AccelNET. Across the top will be the contract
name, accelerator type, and the wording "AccelNET Control System Home Page." Several menus
will be lined down the left side of the page. These menus include accelerator status views, dosi-
metry information, documentation, and pgEdit.

3. Scroll down the page to the bottom so that the Database Tools menu is visible.

Database Tools Menu

4. Single-click on "Database Editor."

You are now presented with a login form.

Editing

70

Database Login

5. Fill in the fields and click the "Login" button.

The hostname should have been filled in for you. Click the dropdown menu to select the contract
you wish to edit. In most cases, there will only be one option. The 'postgres' username should be
used with no password.

At this point, the Java applet should load.

6. Single-click the "Connect" button to connect to the database.

The status bar at the bottom will display a message stating it is connected.

7. Single-click the "(Re)Load" button to load the database into pgEdit.

The user interface should be fairly easy to learn. The database table names are listed as a series of tabs
along the left side of the applet. Across the top you will find buttons to perform global functions. The
following is a list of the buttons and what they do:

Connect(Disconnect) Connects/Disconnects to/from the Postgres database.

(Re)Load Retrieves the tables and populates pgEdit with the latest values. This
should be clicked after major deletions and updates.

Refresh Rec Retrieves and populates the currently displayed screen with the latest val-
ues. This is helpful if you made a mistake and noticed it before you sub-
mit an update.

Update Rec Updates the database with the currently displayed information. This
should be clicked after making any changes before continuing to another
parameter/table.

Delete Rec Removes the currently displayed record from the database permanently.

Insert Rec Inserts the currently displayed record to the database permanently.

Editing

71

Appendix A. Resolving PostgreSQL
Trigger Errors

This appendix explains how to resolve many triggers while deleting from an AccelNET database.

1. LabelRec Table Triggers
The only trigger that should be encountered while attempting to delete from the LabelRec table is one
that refers to the DescRec table. Because the Label field of a DescRec entry validates with the LabelRec
table, one must remove all entries referencing the label you wish to delete. If you were renaming a label,
you probably updated the LabelRec table and used fetch and update to rename the DescRec entries. By
doing this, the DescRec table creates new entries for the Label/RefName pair, leaving the old ones intac-
ted. For example, we want to delete FC 01-2 because the Faraday cup was removed from the system, or
simply was named incorrectly.

First an attempt would be made to delete the cup.

sample1=> DELETE FROM LabelRec WHERE Label='FC 01-2';

NOTICE: can't delete |FC 01-1| it is in use by DescRec.Label
DELETE 0

As you can see, a trigger was hit in the Label field of the DescRec table. Since we don't want this label
at all, delete it from the DescRec table. Attempt to delete from the LabelRec table again as well.

sample1=> DELETE FROM DescRec WHERE Label='FC 01-2';
DELETE 7

sample1=> DELETE FROM LabelRec WHERE Label='FC 01-2';
DELETE 1

The delete was successful since the trigger has been satisfied.

There is one other variation that may occur. That is, the label might be used in the logical link Label/
RefName in the DescRec table. In this case, use fetch and update to modify the logical link to another
parameter or set the values to NULL.

2. DescRec Table Triggers
When deleting entries in the DescRec table, a number of triggers may need to be handled. Logical links
to other DescRec entries is one of them. As described in the LabelRec section of this appendix, use fetch
and update to modify the logical link to another parameters or set the values to NULL.

Another common trigger is with the CrtFixed table. In general, entries in the CrtFixed table pointing to
the DescRec entry you wish to delete are no longer needed. Use a SQL delete command to delete these
records.

CrtDCpnt and CrtICpnt table triggers are more involved. These two tables can have entries that point to
more than just a single DescRec entry. Because of this, care must be taken to remedy the trigger. First,
use the fetch to identify the entry that reference the DescRec entry. Look at each entry and determine if

72

any other DescRec entries will be affected by the deletion of the entry in the Crt table. If no other
DescRec entries will be affected, it is safe to delete the record. If other DescRec entries are affected, the
typical action is to set the Label/RefName in the offending Crt table entry to NULL.

Triggers may also be caused by the NumList or NumPoint tables. If a trigger is with the NumList table,
it is most likely the case that one wants to delete the numeric chain. To do this, find the NumList entry
corresponding to the DescRec you wish to delete. Use the RecId from the NumList table to remove
based on the MrecId in the NumPoint table. Then remove the NumList entry using the same RecId.

sample1=> DELETE FROM NumPoint WHERE MrecId=112;
DELETE 3

sample1=> DELETE FROM NumList WHERE RecId=112;
DELETE 1

If the offending record is simply a NumPoint entry, more steps must be taken. Since the NumPoint table
relies on sequential RecId numbers to function properly, removing a RecId in the middle of a chain
causes a need to shuffle the RecId numbers up. For example, the Label/RefName we want to delete from
DescRec is RecId 3 in a list of five NumPoint actions. If the NumPoint record is deleted from the table,
a sequence of 1,2,4,5 is left. This is not acceptable. To correct this, change the RecId of the fourth entry
to 3, and the fifth entry to 4. After a fetch to verify your changes, you will notice that you now have
1,2,3,4,5 again, with 4 and 5 being identical. Delete the fifth record. Attempt the delete on the DescRec
entry again.

Much like the triggers from the numeric chains, the triggers for the interlock chains can require extra
steps. The same principles apply to deleting an entire chain. Perform a delete based on the RecId from
ChkList, using MrecId in ChkPoint, ChkAct, and ChkAlarm. Then perform the delete based on the Re-
cId in ChkList itself.

If the offending record is an entry in ChkPoint, remove and shuffle the RecId as was described for the
NumPoint table. After shuffling the RecIds, correct the Offset values for the entries to remove the dead
space left by the deleted entry. For example, the previous chain had 5 checks, each of them containing a
single bit of offset. The third check was deleted. The offsets of the old RecId 4 and 5 (new RecId 3 and
4) should be changed to 2 and 3 repectively. In addition, the Mask and Mask2 fields in the ChkAct and
ChkAlarm tables must be updated to reflect the deletion of the ChkPoint entry.

3. DataRec Table Triggers
The DataRec table triggers are similar to those of the LabelRec in that it will only conflict with DescRec
entries. To remedy this trigger, redirect any DescRec entries that point to the Addr of the DataRec you
wish to delete. A common practice is to use the fetch command with a modified .pqry to extract only the
DescRec entries that point to the Addr you wish to delete. Edit the fetched file and set the Addr to 0.
This points the DescRec entries to a NULL DataRec. Use the update command to push the changes
back to the database. Perform your delete statement again.

4. MsgKeys Table Triggers
The MsgKeys table can run into problems when deleting from two types of triggers. The first type will
be caused by the MsgTbl table. The second caused by the DescRec table.

It is assumed you wish to remove a message completely and are not attempting to rename a message list.
To handle the MsgTbl, simply perform a delete statement on the table name in the MsgTbl table. For ex-
ample, one might have created a UserSR message for a custom status read that is no longer used. In this
case, the following should be done.

Resolving PostgreSQL Trigger Errors

73

sample1=> DELETE FROM MsgTbl WHERE MGown='UserSR';
DELETE 2

sample1=> DELETE FROM MsgKeys WHERE MsgNme='UserSR';
DELETE 1

The message list may still be in use by a DescRec entry, preventing deletion. If the DescRec entry is no
longer needed, delete it. Otherwise, use the fetch and update commands to point the record to a differ-
ent message list.

5. Other Table Triggers
Other triggers exist that one may run into. For example, triggers when working with the wiring tables
may occur. The previous sections should give you enough information to get you started with handling
them. After working with the database, it will become easier to make an informed decision on how to
handle a situation. Always be aware of the structure and intertable relationships when modifying the
database.

Resolving PostgreSQL Trigger Errors

74

Glossary
buildmb Uses a set of SQL queries and formulas to calculate values for M

and B of DescRec entries.

convertX This will calculate the X coordinates for fields based on their recid
in a crt entry.

convertY This will calculate the Y coordinates for fields based on their recid
in a crt entry.

dbconvert Convert the Postgres database entries to the AccelNET runtime
format.

dbmodify Send the converted Postgres database entries into the currently run-
ning runtime system. This is only safe for a select set of tables.

dump_accelnet_db Creates flatfiles of all Postgres tables for a database.

fetch Retrieves database entries from the Postgres database as well as cus-
tomizable SQL queries. The arguments vary for this command based
on the current directory.

pg_dump Used to get a raw dump file from Postgres for a database.

pgEdit Experimental graphical database editor.

Query Files (.pqry) These files are used to customize a fetch command.

update Sends updated database entries, including new additions to the Post-
gres database. If a customized SQL query was used to retrieve the
entries, the query file must remain in place.

75

	AccelNET Control System User Manual
	Table of Contents
	Chapter 1. Introduction to Linux
	1. Default Users
	2. Linux Startup Procedure
	3. Logging into a Workstation
	4. Linux Shutdown Procedure
	5. Basic Linux Commands

	Chapter 2. AccelNET Installation
	1. Introduction
	2. Preparing the Operating System
	3. Installation
	4. Configuration

	Chapter 3. Introduction to AccelNET
	1. Machine Parameters in the Control System Database
	2. Starting/Stopping AccelNET Services
	2.1. Services Startup (Menu Based)
	2.2. Services Startup (Command Line)
	2.3. Services Stop (Menu Based)
	2.4. Services Stop (Command Line)

	3. Using the AccelNET Tools
	4. Introduction to Xcrt
	4.1. Launching Xcrt (Menu-Based)
	4.2. Launching Xcrt (Command Line)
	4.3. Organization of the Xcrt Display Window
	4.3.1. Mouse Window
	4.3.2. Keyboard Window
	4.3.3. Page Window
	4.3.4. Display Colors

	4.4. Basic Xcrt Operation
	4.4.1. Using the Mouse
	4.4.1.1. Inc/Dec Mode
	4.4.1.2. Rollerball Mode
	4.4.1.3. X/Y Mode

	4.4.2. Keyboard Commands

	5. Assignable Meters
	6. Assignable Knobs
	7. Accelerator Startup Procedures

	Chapter 4. AccelNET Console Commands
	Chapter 5. Advanced AccelNET Topics
	1. Manual Pages
	2. Environment Variables
	3. Directory Structure
	4. Manipulation of the Accelerator Runtime Database
	4.1. Saving the Entire Accelerator Runtime Database
	4.2. Saving a Particle Run from the Accelerator Runtime Database

	5. Using the Accelerator Scaling Program
	6. Terminal Server Configuration

	Chapter 6. Accelerator Mass Spectrometry
	1. Introduction to AMS
	2. Sequential Beam Injection system
	3. Sequential Beam Injection System control electronics
	3.1. Sequence Controller
	3.2. Sequenced D/A Converter
	3.3. Gate Generator
	3.4. Quad Receiver

	4. AMS dosimetry supervision
	5. Abundant Isotope Data Collection
	6. Rare Isotope Data Collection
	7. HISTmngr

	Chapter 7. System Maintenance
	1. Backup the System to Tape
	2. Creating and Writing CD/DVD Images
	2.1. Creating a CD/DVD Image
	2.2. Writing a CD/DVD Image

	Chapter 8. Database Structure
	1. General Information
	2. Data Point Definition Tables
	2.1. LabelRec Table
	2.2. DescRec Table
	2.2.1. DataTypes
	2.2.2. CrtKeys
	2.2.3. CtlKeys
	2.2.4. Write Permissions
	2.2.5. ScaKeys
	2.2.6. DRkey Usage
	2.2.7. SpanMin and SpanMax Usage

	2.3. Message Tables
	2.3.1. MsgKeys Table
	2.3.2. MsgTbl Table

	2.4. DataRec Table
	2.4.1. DevType
	2.4.2. Driver
	2.4.3. DTkey

	3. Button Tables
	4. Data Point Definition Key Tables
	4.1. RefKeys Table *
	4.2. DKeys Table
	4.3. CrKeys Table
	4.4. CtKeys Table
	4.5. OwnKeys Table
	4.6. ScaKeys Table
	4.7. DevKeys Table
	4.8. DrvKeys Table
	4.9. CmdKeys Table *
	4.10. QueKeys Table *

	5. Display Page Tables
	5.1. PgKeys Table
	5.2. CrtText Table
	5.3. CrtFixed Table
	5.4. CrtDCpnt Table
	5.5. CrtBut Table
	5.6. CrtICpnt Table

	6. Display Page Key Tables
	6.1. DFkeys Table
	6.2. IconKeys Table

	7. Interlock Tables
	7.1. ChkList Table
	7.2. ChkPoint Table
	7.3. ChkAct Table
	7.4. ChkAlarm Table
	7.5. CPtype Field Usage

	8. Numeric Processor Tables
	8.1. NumList Table
	8.2. NumPoint Table
	8.3. NPtype Field Usage

	9. Interlock and Numeric Processor Key Tables
	9.1. CPTkeys Table
	9.2. NPTkeys Table

	10. CAMAC Interface Wiring Tables
	10.1. JackRec Table
	10.2. RPrecord Table
	10.3. Zrecord Table
	10.4. Trecord Table

	11. CAMAC Interface Wiring Information Key Tables
	11.1. ColKeys Table
	11.2. BusKeys Table
	11.3. JkKeys Table

	12. Report Usage
	12.1. Invoking Reports
	12.2. Printing Reports

	13. Report Formats
	13.1. Label report
	13.2. RecId and Module report
	13.3. JackRec report
	13.4. RPrecord report
	13.5. Zrecord report
	13.6. Rpanel report
	13.7. Zpanel report

	14. BuildMB Process
	15. Table Translation
	16. Using SQL
	17. Database Construction Tools

	Chapter 9. Editing
	1. Introduction
	2. Console Editing
	2.1. Starting a new Contract and Database
	2.2. Retrieving Tables
	2.3. Updating Tables
	2.4. Deleting entries
	2.5. Database Conversion
	2.6. Applying Changes

	3. Graphical Editing
	3.1. About pgEdit
	3.2. Using pgEdit

	Appendix A. Resolving PostgreSQL Trigger Errors
	1. LabelRec Table Triggers
	2. DescRec Table Triggers
	3. DataRec Table Triggers
	4. MsgKeys Table Triggers
	5. Other Table Triggers

	Glossary

